THE PSOCOPTERA (INSECTA) OF SOUTH AUSTRALIA

by

C. N. SMITHERS

The Australian Museum, 6-8 College Street, Sydney, N.S.W. 2000

ABSTRACT

SMITHERS, C Ni, 1982. The Psocoptera (Insecta) of South Ausiralia Rec. S. Aust. Mus. 18 (20): 453-491.
The number of Psocoptera known from South Australia is increased from 8 to 45 , including 16 new species and 21 new records for the State. The fauna appears to be predominantly associated with bark and dried leaves as opposed to green foliage. The relationships of the fauna are discussed briefly within the context of present records of the Australian fauna.

INTRODUCTION

Two significant recent collections of Psocoptera from South Australia have prompted a detailed study of all material available from this area the results of which are presented here.

The first Psocoptera from South Australia were described by McLachlan (1866). He described Psocus pallipes McLachlan from Adelaide, transferring it to Propsocus in a postscript to the same paper. It has since been recorded from Western Australia, Queensland and New South Wales. He also described Psocus striatifrons McLachlan from "Australia meridionali", transferring it immediately to Stenopsocus Hagen. This species has not been recorded again and it is possible that it may not be South Australian even if it does occur elsewhere in southern Australia. The type locality is not precisely known. Stenopsocus is a Palaearctic and Oriental genus with one species in New Guinea and eastern Australia which has been found as far south as northern New South Wales. S. striatifrons is certainly not the same species. Detailed study of the type of S, striatifrons is necessary to clarify its status and confirm its generic position. Banks (1939) described Zelandopsocus sinuosus Banks from "Mt. Lofly Range". This species is now placed in Austropsocus Smithers and has been recorded from Tasmania, Victoria, Australian Capital Territory, New South Wales and Queensland. Smithers (1964a) recorded the widespread Lepinotus reticulatus EnderJein and Psyllipsocus ramburii Selys-Longchamps from caves in South Australia and Phlotodes australis (Brauer) from several localities (Smithers 1964b). Thornton and New (1977) recorded Haplophallus bundoorensis New and H. medialis Thornton and New from South Australia. The
former is known from Victoria, Queensland and New South Wales and the latter from New South Wales, Ausiralian Capital Territory and Victoria. So, by 1977 eight species had been reeorded from South Australia.

This paper is based on collections in the Australian Museum and the South Australian Museum. These include 41 species, of which four haye already been recorded from South Australia. Four of the recorded species are not represented in the present material. 21 are new records for the State (marked with an asterisk in the Jist below) and 16 are new species. In all, 45 species (including S. striatifrons) are now known from South Australia.

The Psocopteta so far recorded from Seuib Australia are nearly all inhabitants of bark or dead leaves; there seem to be very few species on green foliage. Precise habitat information is, however, available for only a small proportion of the material. The species which may be associated with grecn foliage are Caccilius semijuscatus (Tillyard), Stenopsocus striatifrons (if it is a Stenopsocus) and Cladioneura punctata sp. n. although even these cannot be confirmed as inhabitants of fresh leaves. It seems unlikely that the main metbod of collecing, by beating, would give samples biassed toward bark dwellers as opposed to inhabitants of green Ieaves. The fauna as so far known seems, thetefore, to be poor in inhabitants of green leaves.

Echinopsocus grayi sp. n., Pachytroctes rugosus sp. n. and Sphaeropsocopsis recens (Hickman) are leaf litter insects. Echmepteryx (Loxapholia) brunnea Smithers is an inhabitant of twigs and smaller branches. The two species of Trogidae, Cerobasis guesttalica (Kolbe) and Lepinotus reticulatus and also Psyllipsocus ramburii are very widespread domestic species which have all been taken in outdoor babitats, the last two being known also from caves. Lachesilla pedicularia (L.) has been recorded from several parts of the world. In Europe it is an inhabitant of trees and shrubs and is often found in bomes. The only South Australian record is from packing straw from England. The two species of Ectopsocidae, Ectopsocus californicus (Banks) and E.cetratus Smithers, are inhabitants of dried leaves cither on plants or as leaf litter as are Pentacladus eucalyptl Enderlcin and Propsocus pallipes. Mesopsocus reticulatus sp . n_{1} is the first species. of the family to be recorded from Australia, Several
members of this family in Africa occur in fairly dry habitats on the twigs of shrubs and the European species are found on bark of branches and twigs. The most important family of bark dwelling psocids is the Psocidae. The family is well represented in South Australia, comprising about 30% of the psocopteran fauna so far known. The two myopsocids, Phlotodes australis and Ph. hickmani (Smithers), feed on algae and fungi on bark; the former is very common on damp suburban paling fences.

Untit the fauna of the whole of the continent is better known only tentative comments can be made on the relationships of the South Austratian fauna as a whole although a few elements can be clearly discerned. There is a worldwide element, represented by such species as Cerobasis guestfalica, Lepinotus reticulatus and Psyllipsocus ramburii which have probably established themselves independently of human influence, although they are also found in domestic situations. Ecropsocus californicus and Lachesilla pedicilaria are similarly very widespread species well able to establish themselves in new areas. There is an element composed of Australasian species, such as Caecilius semifuscaius, Peripsocus maoricus (Tillyard), Propsocus pallipes, Pentacladus cucalypti, Phlotodes australis and the philotarsids, which are widespread in coastal regions of Australia and which, in some cases, have ranges which include New Zealand and Norfolk Island. To what extent there has been human influence in the overseas distributions is not known but such species as Ph, australis could easily be carried on timber, Together with these species can be included those which have a more restricted southern and castern Australian distribution such as Echmepteryx brunnea Smithers, Peripsocus edwardsi New, P. hickmani New, Spilopsocus ruidis Smithers and Tanystigma tardipes (Edwards). There appear to be two other elements occurring in South Australia one of which has affinities with Western Austratia, including species such as Lasiopsocus michaelseni Enderlein and Ectopsocus cetratus, while the other has aftinities in an easterly direction with Victoria and Tasmania, represented by such species as Phlotodes hickmani, Spilopsocus masseyi New and members of the Blaste macrops species group. Finally, there is the interesting species Sphaeropsocopsis recens which is known from Tasmania and South Australia and which appears to have close relatives only in South America, Angola and in Baltic amber. Mesopsocus reticulatus is an anomalous species in that the genus is known from many parts of the world but has not yet been mentioned in records for other parts of Australia. Its occurrence in South Australia places it in an unusual, isolated position zoogeographically.

TAXONOMIC ACCOUNT OF SOUTH AUSTRALIAN PSOCOPTERA

Smithers (1970, p, 372 et seq.) has given a key to the families of Australian Psocoptera. In that key the Mesopsocidae (not previously recorded from Australia) would run to couplet 6. As it has glabrous wings Mesopsocus will run to the Psilopsocidae, a family not yet recorded for South Australia, Mesopsocus differs from psilopsocids in fraving a tall areola postica and clear, hyaline wings; the psilopsocids have a shallow areola postica and darkly patterned wings.

LIST OF SPECIES OF PSOCOPTERA KNOWN FROM SOUTH AUSTRALIA

(* New records for South Australia. ** South Australian species not represented in present material),

LEPIDOPSOCIDAE

Echinópsocus grayi sp. n.
*Echmepteryx (Loxapholia) brunnea Smithers
trogmidae
*Cerobasis guestfalica (Kolbe)
**Lepinolas reticulatas Enderlein
PSYLLIPSOCIDAE
杽Psyllipsocus ramburii Selys-Longchamps

PACHYTROCTIDAE

Pachytroctes rugosus sp. n.
SPHAEROPSOCIDAE
${ }^{*}$ Sphueropsocopsis recens (Hickman)
CAECILIDAE
*Caccilius semifascatus (Tillyard)
STENOPSOCIDAE
**Stenopsocus striatifrons (McLachlan)

LACHESILLIDAE

* Lachesilla pediontarla (L.)

ECTOPSOCIDAE

*Ectopsocus californicus (Banks)
*Ectopsocus cetratus Smithers
PERIPSOCIDAE

* Peripsocus edwardsi New
*Peripsocius muoricits (Tillyard)
${ }^{*}$ Peripsocus hickmani New
Peripsocus natialis sp. n.
Peripsacus hollowayi sp, n ,
PSEUDOCAECILIIDAE
Cladioneura punctata sp. n.
ELIPSOCIDAE
*Pentactadus eucalyphi Enderlein Propsocyes pallipos (McLachlan)
*Spilopsocus masseyi New
*Spilopsocus ruidis Smithers

PHILOTARSIDAE

**Austropsocus situosus (Banks)
*Haplophullus gultalus (Tillyard)
Itaplophallus hundaopensis New
Haplophallus medialis Thorntor and New
*Haplophallus sinus Thornton and New

* Aaroniclla rawlingsi Smithers

MESOPSOCIDAE

Mesopsocus reticulatus sp. n.

PSOCIDAE

* Lasiopsocus michaelseni Enderlcin

Lusiopsocas dicellus sp, in.
Blase macrops sp. n.
Blaste magnifien sn. n.
Blospe angusta sp. n.
*Ptycta umbrara New

* Pryeta glossoptera New

Pyeta lompipentis' sp, n.
Prycta hollowayae sp. n.
*Tanystigma tardipes (Edwards)
Tanystigma elongata sp. n.
Tanystigma bifurvata sp. n .
Psocidus mouldsi sp. n.
Psocidus parilles sp. n.

MYOPSOCID.AE

Phlotodes australis (Brauer)
*Phlotodes hickmani (Smithers)

KEY TO ADULT PSOCOPTERA FROM SOUTH AUSTRALIA

1 Antennat with more than 20 segments, never secondarily annulated. Tarsi 3 -segmented. Pterostigma not thickened, or absent. Pataprocts with strong posterior spine 3 Antentae usually with 13 segments, if 15 - to 17 segmented then some segments are sccondarily annulated. Tarsi 2 - or 3 -segmented. Pterostigma thickened or not. Paraprocts without posterior spine.
. 2
2 (1) Antennate 12- to 17 -segmented, some secondarily annulated. Tarsi 3 -segmented. Pterostigma not thickened
Anteanate usually 13 -segmented. Tarsi 2- or 3segmented, if latter then flagellar segments not secondarily annulated. Pterostigma thickened ., 6
3 (1) Head long and vertical. Maxillary palp without sensillum on inner side of sceond segment. Cu_{2} and IA end logether at wing margin (i.e. nodulus present) (Psyllipsocidac)

Psyllipsocus ramburii Head short. Maxillary palp with scnsillum on inner side of second segment. Cu_{2} and IA end separately at wing margin (i.e. no nodulus) " 4
4 (3) Claws with preapical tooth. Body and wings bearing seates (Lepidopsocidae) 18
Cluws without preapical tooth. Body and wings not scâly (Trogidac) 19
5 (2) Wings, when present, flat, with complete venation. In apterous and alate forms eyes situated near vertex (Pachytroctidae) Pachytroctes mbosus Wings, when present, with incomplete venation, corved, elyoriform. Fyes situated well below vertex (Sphaeropsocidac)
.. Sphacropsocopsis rucens
6 (2) Labial palps broadly riangular, laterally diverging. Lacinia narrow towards apex. Female gonapophyses reduced to a pair of inconspicuous. acuminate valves, with a basal seta
.7
Labial palps short and appressed. somewhat circular. lacinia not usually narrowed towards
apex. Female gonapophyses usually of three valves, the external valve setuse; if reduced then not in form of lwo acuminate valves 8
7 (6) $\mathrm{Cu}_{1,}$ fused with M , or joined to it by a crossvcin (Stenopsocidae) - Stenopsocus striatifrons $\mathrm{Cu}_{\mathrm{p}_{\mathrm{n}}}$ not fused thor joined to M (Caccilidac)

Caccilius semifuseams
8 (6) Areola postica free or absent. Females sometimes brachypterous or aplerous but without glandular setae on head

9 $\mathrm{Cu}_{1_{n}}$ fused with M in fully winged forms. Females occasionally brachypterous, but then glandular setac are present 15
9 (8) Tarsi 3-segmented 10
Tarsi 2-segmented 12
10 (9) Fore and hind wings without setuc (Mesopsocidae) Mesopsoris reticulams
Fore and hind wings with at least a few margioal sctae, even in brachypterous forms; usually with obvions setas 11

If (10) Hind wing with margin entirely setosc, Male hypandrium strongly sclerotized. Female subgenital plate with median lobe (Philotarsidae) 20
Hind wing with at most setae on margin between R_{2+3} and R_{4+5}. Brachyptery common. Male hypandrium lightly selerotized. Female subgenital plate usually bilobed (Elipsocidae).. 24
12 (9) Arcola postica absent 17
Arcola postica present …................................ 13
13 (12) Wings without setae (Lachesillidac)

14 (13) Distal parts of veins in fore wing with more than one row of setae (Pseudocacciliidae)

Cladionteura punctata
Distal parts of veins in fore wing with one row of setae (Elipsocidae) 24
15 (8) Tarsi 2-segmented (Psocidae) 27
Tarsi 3-scgmented .. 16
16 (15) Fore wings without setac. Wing pattern of numerous, confluent, irregular dark areas giving wing a densely mottled appearance (Myopsocidac) 47
Wing pattern bold, made up of large hyaline and coloured arcas or withont pattern (Elipsocidae)

24
17 (12) Hind wing with Rs and M fused for a lengin. \mathbf{R}_{1} meets margin at acute angle (Petipsocidae)
Hind wing with Rs and M joined by a crossvein. R_{1} meets margin at right angle or almost so (Ectopsocidae)

48
18 (4) Fore wing with Rs branched. Hind wing developed Echmepteryx brunnea
Fore wing with Rs simple. Hind wing reduced to small, pointed, flap Echinoprocus grayi

19 (4) Fore wings seduced but present as broad flaps
Lepinous reticulatus
Fore wings viriually absent, represented by a small tubercle Cerobasis guestialica

20 (11) Setae of fore wing veins sited on distinct dark brown spots. at least in basal half of wing; flagellar segments fo-8 with light apices 21
Setae of fore wing veins not sited on dark hrown spots. Flagetlar segments 6.8 without light apices

21 (20) $1 n$ fore wing $C u_{22}$ bare, setae of apical veins sited on dislinct brown spots .. - Aarmmiella rawlingsi In forc wing Cue selose, sctac of apical veins not sited on brown spets Jafiophallus medialis
22 (20) In low wing Cuy sctose or wing very reducca. Antennal apex attenuated, with a single, long sela
It fore wing Cu.s hare. Antennal apex not atlenwated, not with a single long setit

Haplophallus siums
23 (22) Femora and tibiac largely dark chocolate brown; feinale brachypterous
..... Maploplullews bundoorcosis
Femorit and tibias light brown; female macroplérous or brachypterous Haplophallus gutratus
24 (16) Arcola postica fused with M or joined to it by a crossvein

25
Areola postica free 26
25 (24) M with more than 3 branches
M with 3 branches Penlacladus anculypi
26 (24) Areola postica with $\mathrm{Cut}_{\mathrm{ta}}$ curved to give a convex distal margin to cell. Hypandrium simple, with. out postero-lateral lobes . Spilopsocus masseyi Arcola postica with $\mathrm{Cu}_{1 \text {, }}$ sinnous to give a concate distal margin to cell. Hypandrium with rounded postero-lateral lobes

Spilopsucus midis
27 (15) Fore wing veins obviously sctose Lasiopsocur michaclseni
Fore wing veins without of apparenlly without setae

$$
28
$$

28 (27) Forc wing with overall speckled pattern Blavte magnifica
Fore wing hyaline or patterned, in which casc pattern is not speckled 24

29 (28) Cell M_{3} netrow. M_{3} and $\mathrm{Cu}_{\mathrm{i}_{2}}$ parallel Cell M_{3} not markedly narrow. M_{3} and $\mathrm{Cu}_{\boldsymbol{n}}$ nol paralle1 30
30 (29) Pterosligma with spurvein- 31
Pterostigma without spurvein 33
31 (30) Cells R_{3} and R_{-}strongly and extensively pigmented Tamystigma clongata Cclls R_{3} and R_{j} not strongly and extensively pigmented

32 (31) Distinct pigmented area near margin only in cell R_{1}.............................. Tanystigha bifurcuta No distinct pigmented area near mnrgin in cell \mathbf{R}_{1}

Tanystigma lardipes
33 (30) Fore wing byaline except for pignented urca at margin in ccll K_{1} or also over whole of cell K_{1} bisad of hind angle of ptcrostigma- 34
Wing markings otherwise 35
34. 33) Pigmented atca ncar margin and over whole of cell R_{1} basad of hind angle of pternstigma

Piycta hollowayae ob
Pigmented area of cell R_{1} only near margin
Tanystigma bifurcata d
35 (33) Mcdian cells strongly nigmented
psocidus utouldsi
Median cells not strongly pigmented 36
36 (35) Area around nodulus not pigmented 37
Areat around nodulus pigmented 38
37 (36) Phatlosome open postcriorly
-.. . - ... Lasiopsocus dicellas of
Phallosome closed posteriorly
Prycta hallowmue a
38 (36) Cclf R_{1} strongly pigmented beyond lind augle of pterostigma

Bsocidus parilla
Cell R_{1} not so pigmonted
.39
39 (38) Cell $R_{\text {.i }}$ with pigment spot anterior to areola postica
fiycta slossoptera
Cell R.: without such at spol 40
40 (39) No spot at separation of M and $\mathrm{Cu}_{1} \ldots . .41$
Spot of colour at separation of M and $\mathrm{Cu}_{1} 42$
41 (40) No dark arcas in busal cells ... Ptyctn longipannis Some dark areas in basal cells Piycta umbrata

42 (40) Spot at separation of M and CH almost reaching Cu』... 43
Spot at separation of M and Cu_{1} small.
...............
43 (42) Area around Rs and M junction pigmented
Lasiopsecus dicellus 웅
Area around Rs_{s} and M junction hyaline
............ Ptycta Mollowayae 으․
44 (17) Fore wings grcy with hyaline areas, visible even in brachyptcrous females Prripsocus edwardsi
Fore wing without such markings
45
45(44) Forc wing with Rs, M basad of fusion with Rs and nodulus narrowly bordered with brown ... Peripsucus hickmami
Fore withg without such markings 46
46 (45) Epicranial plates pale, bordered with pale brown Peripsocias maoricus
Epicranial plates palc with a few brown marks adjacent to compound eycs, ncross vertex and adjacent to median upicranial suture

Peripsoces notialis
Epicranial plates very dark brown, a narrow pale stripe from epistomial suture towards back of head on each epicranial plate Periprocas hollowayi

47 (16) Larger species, fore wing longth $5.0-5.5 \mathrm{~mm}$
Phlotodes ausiralis
Smaller species, fore wing length 3.4-3.6 min Photorles hicknumai

48 (17) Verlex pale brown, postelypeus much darker Ectopsocus califormicus Vertex pale with darker spots, postclypeal ground colour not much dirker than vertex, postclypeus with dark stripes ... Eclopsocus cetranus

Family LEPIDOPSOCIDAF Echinopsocus grayi sp. n.

Female

Coloration (in alcohol): Head, body, lems, antennac and maxillary palps golden brown, A faint suggestion of a darker, curved narrow line mesad of each compound cyc, a darker median epicranial suture, a median line running length of pronotum and mesosentum and with margins of mesoscutum dark. Apex of abdomen darker than head and thorax. Ocelli black. Eyes black. Fore wing transparent, tinged with golden brown: veins a little darker than rest of wing surface; when viewed with transmitted light a somewhat mottied appearance is evident with very faint indication of brond, transverse, irregular banding. Hind wing transparent, colourless.

Morphology: Brachyptcrous. Most of scales lost in available material, those present long and very narrow. Somewhat thickened fore wings not reaching apex of abdomen. Abdominal terga membranous under fore wings (i.c. as far as tergite 7) ; eighth and ninth tergites and terminal structures well selerotized. Length of body: 2.5 mm . Median epicranial suture and anterior arms very distinct. Vertex sharp. Head with long, dense pubescence. Postclypeus bulbous. Antennae incomplete in all specimens; scape and pedicel broad, remaining segments short, about twice as long as wide. Eycs fairly large,
reaching level of vertex, with an occasional scta between facets. IO/D:2.0; PO:0.7. Ocelli welldeveloped, anterior ocellus only a little smaller than lateral ocelli. Lacinia narrow, parallel-sided with an emarginate apex so that the end is divided into a smaller inner tooth and a larger outer tooth. Maxillary palp with elongate second scgment with small sensillum; fourth segment a little broadened distally. Prothorax sharp dorsally, strongly pubescent. Measurements of hind leg: $\mathrm{F}: 0.72 \mathrm{~mm}$; $\mathrm{T}: 1.16$ $\mathrm{mm} ; \mathrm{t}_{1}: 0.43 \mathrm{~mm} ; \mathrm{t}_{3}: 0.11 \mathrm{~mm} ; \mathrm{t}_{3}: 0.11 \mathrm{~mm}$; rt 4:1:1. Hind femur short and broad, dorsal cdge convex with large setae. Tibia long and narrow, apex with two stout and one small spur. Claws with preapical tooth but without evident denticles basad of tooth. Fore wing length: 1.96 mm ; width: 0.72 mm . Fore wing (Fig, 1) not reaching apex of abdomen, narrowing towards apex; membrane somewhat thickened. Anterior margin somewhat thickened. Distal seetion of Se (i.e. from stigraapophysis to marginal thickening) distinct. R_{1} runs parallel to wing margin for a long length, reaching margin not far short of wing apex. Rs fused with M for a short length just distad of stigamapophysis, simple, not branched. M 2-branched, the anterior branch, apparently M_{1} is, in fact, Rs. Cu_{1} forks at level of stigmapophysis so that the areola postica is long. Veins not well developed but evident, indicated by position of rows of long, erect setae, represented by alveolac in figure. Mcmbrane densely

FIGS, 1-6. Echinopsocus grayi sp. n. 1. ㅇ Fore wing. 2. I Hind wing (same scale as fore wing). 3. 9 Hind wing (endarged) 4. $\frac{7}{}$ Epiproct ind paraproct. 5. Gunapophyses. 6. ${ }^{3}$ Paraproct.
covered with scales and scale-like setae, most of which are lost in available specimens. Hind wing length: 0.44 mm , width: 0.12 mm . Hind wing (Figs, 2,3) reduced to a membranous, acuminate flap with faint suggestion of one vein near anterior border and another, even less distinct, running more or less parallel with the hind margin. A single small seta occurs about half-way along hind margin. Epiproct (Fig, 4). Paraproct (Fig, 4), Subgenital plate simple, rounded behind, Gonapophyses (Fig, 5). Ninth tergite and median part of eighth tergite more heavily sclerotized than other abdominal terga, being the areas exposed through wing reduction.

Mate

Coloration (in alcohol): As female.
Morphology: General morphology as female, similarly brachypterous. Eyes as in female. Length of hind leg; $F: 0.64 \mathrm{~mm} ; \mathrm{T}: 1.04 \mathrm{~mm} ; \mathrm{t}_{1}: 0.39 \mathrm{~mm}$; $t_{2}=0.08 \mathrm{~mm} ; t_{8}: 0.08 \mathrm{~mm} ; \mathrm{rt}: 49: 1: 1$. Fore wing length: 1.68 mm ; width: 0.68 mm . Form and venation as in female, Hind wing as in female Hypandrium well scleratized, with gently rounded hind margin, a group of strong setae in middle of hind margin. Phallosome with external parameres posteriorly strongly acuminate, their apices strongly incurved. Epjproct simple, rounded behind, Paraproct (Fig, 6).
Material Examined: SOUTH AUSTRALJA. + (holotype), of (allotype), in litter, Mambray Creek, 19.iv. 1973, M. Gray Paratypes: 2 ?, as holotype.

Holotype, allotype and paratypes in the Australian Museum.

Discussion: Echinopsocus Enderlein was erected on the basis of a single specimen, in poor condition, of E. erinaceus Enderlein from New Guinea (Enderlein 1903). No additional material of this genms has become available until now. E. grayi has most of the generic characters of E. erinacens but differs in the fore wings not having a long apical extension although they are somewhat pointed. Enderlein (1903, p. 331) indicated that he was unable to find ocelli in E. eritacels but they are presont in E. grayi. The venation of Echinopsocus is quite distinctive, however, and E. grayi agrees with the type species. R_{1} is long; Rs is not branched, appearing to arise from M owing to the evancscence of the basal section of that vein basad of its fusion with M ; M is 2-branched, the anterior branch reaching the margin near the bluntly pointed wing apex. Although most of the sctae and scales have been lost from the four available specimens, those which remain and the arrangement of alveolae indicate that E. grayi is clothed in scales through which protrude a fairly dense covering of strong, creet setae, as described for
E. crinaceus. The immediately apparent difference between E. grayi and E. erinaceus is the difference in wing shape, the apical extension being considetable in E, erinaceus whereas the apex is bluntly pointed in E. gray/.

Although E. grayi does not conform to the characters of the generic definition so tar as occlli and fore wing shape are concerned it is not considered necessary to ereet a separate genus for it. It suffices to emlarge the limits of Echinopsocus to include. species which do have ocelli and in which the wing. shape is more nearly normal,

Echmepteryx (Loxopholia) Drunnea Smithers

Echmetrery (Loxopholia) brunnea Smithers 1965. I. ent, Soe, Qd. 4: 75, Figs. 11-16,

Material Examined: SOUTH AUSTRALIA. 1 if, Yalata, $131^{\circ} 45^{\prime} \mathrm{E}, 31^{\circ} 30 \mathrm{~S}, 29$ ix. $1978, \mathrm{M}, \mathrm{S}$. and B. J. Moulds. 1 f, 40 km . W. Nullarbor, $130^{2} 29^{\mathrm{E}}$, $31^{\circ} 28^{\prime}$ S. 29. ix. 1978 , M. S. and B. J. Moulds.

This species has been recorded from New. South Wales and Queensland.

Family TROGIIDAE Cerobasis guestfalica (Kolbe)

Hypereles guestfalicus Kolbe, 1880, Jber. westf. ProwVer, Wiss. Kunst 8: 132 ; pl. IV, fig. 22.
Hyperetes pinicala Kolbe, 1881, Ent, Nachr, 7: 227.
Tichohja alternans Kolbe, 1882, Ent, Nachr, 8:212.
Cerobasis muraria Kolbe, 1882. Ent, Nachr, 8: 212.
Hyperetes tessulatus Hagen, 1883. Stetion. ont. Zig. 44: 216.
Albardia alternans (Kolbe). Jacobson and Bianchi, 1904. Neuropt. Russ. Emp. p. 496.

Cerobasis guestfalica (Kolbe). Roesler, 1943. Stettin. ent. Ztg. 104: 13.

Material Examined: SOUTH AUSTRALIA, 5 ㅇ, Port Elliot, 13.v. 1980, G. and J. Holloway. C. guestfalied is a cosmopolitan species which is found in domestic habitats as well as in the wild.

Lepinotus reticulatus Enderlein

!Clothilla inquilina (Heyden). Hagen, 1882. Stettin. ent. Ztg. 43: 526, P1. 11, Fig. 6.
:Atropos inquilina (Heyden), Kolbe, 1888. Jb Ver. Naturk. Zwickau 1887: 190, 191.

Lepinotus retieulatus Enderlein, 1905, Res, Swed. Exp. Egypt 18: 31, Fig. 9; PI. 1, Figs 1, 2; PI. 2, Figs, 12, 19, 23.
Not represented in the present material, this species has been recorded from caves in South Australia (Smithers, 1972).

Family PSYLLIPSOCIDAE
 Psyllipsocus ramburii Selys-Longchamps

Psocus pedicularius Rambur, 1842. Historie naturelle des Insectes, p. 323.
Psyllipsocus ramburii Selys-Longchamps, 1872. Eut. mon. Mag. 9: 145.

Nymphopsocus destructor Enderlein, 1903. Zool. Aнz. 27: 76.

Ocelloria gravinympha Weber, 1906, N.Y. Med. J. 84: 885, Fig. 1.
Nymphopsocus troglodyta Enderlein, 1909. Arch. Zool. exp. gen. 5 (1): 536, Pl. 18, Figs 9-11, 13, 14.

Fita vestigutor Navas, 1913. Rev. Acad. Madrid 12: 333, Fig. 4.
Fabrella convexa Lacroix, 1915. Bull. Soc. ent. Fr. 1915: 194.
Not represented in the present material, this species has been recorded from South Australian caves (Smithers, 1972).

Family PACHYTROCTIDAE

Pachytroctes rugosus sp. n.

Female

Coloration (in alcohol): Head, thoracic nota, legs, first two abdominal terga, a lateral patch on each side of third abdominal tergum and eighth tergum dark brown. Ninth tergum and epiproct pale brown; paraprocts dark brown. Other abdominal terga very lightly sclerotized but segments are indicatcd by broken bands of subcutaneous brown pigment. Antennae brown, a little paler than head. Eyes blaek.

Morphology: Apterous. Median epicranial suture extending about one third distance towards epistomial suture; anterior arms represented by a line of tiny papillac visible only in cleared specimen. Hind border of head straight between eyes. Sculpturation of vertex consisting of short, raised bars in haphazard arrangement, that of the postclypeus similar but finer, Lengths of antennal segments: f_{1} : $0.12 \mathrm{~nm} ; \mathrm{f}_{2}: 0.12 \mathrm{~mm}$. First three flagellar segments without annulations; antennae annulated from fourth

FIGS. 7-10. Pachyiroctes rusosus sp. п. 7. Gonápophyses. 8. Subgenital plate. 9. 우 Paraproct. 10. Q Lacinia.
segment. Eyes fairly small, their upper raargin lying level with vertex. Small rubercles present between facets. Ocelli absent. Lacinia (Fig, 10) apparently with five apical teeth, the fifth not clearly separated. Fourth segment of maxillary palp elongate, four times as long as wide. Thoracic terga of approximately equal width and length, clearly delineated, finely sculptured with small, pointed spicules arranged in irregular transverse fows, Darsally, the first, second, eighth and ninth lerga heavily sclerotized, remaining terga lightly sclerouzed, almost membranous, except for a small irregular area near the lateral margin on segment three Second segment laterally sclerotized. Eighth segment much shorter than ninth, the latter being more than twice as Jong as eighth and much narrower opposite epiproct than adjacent to eighth tergite. Sculpturation as in thoracic terga but absent from median area in anterior half of second abdominal segment; spicules less densely arranged on ninth tergite, especially in middle of plate. Femora of pro- and mesothoracic legs strongly broadened with long setae. Hind femora only slightly broadened. Measurements of hind leg: $F: 0.38 \mathrm{~mm} ; \mathrm{T}: 0.49 \mathrm{~mm} ; \mathrm{L}_{1}=0.24 \mathrm{~mm}$; $\mathrm{t}_{2} ; 0.05 \mathrm{~mm} ; \mathrm{t}_{3}: 0.07 \mathrm{~mm} ; \mathrm{rt}: 4.8: 1: 1.4$. Epiproct (Fig, 9) finely papillate except for a narrow posterior area; setose. Paraproct (Fig. 9), setose, papilae in dorsal half only, Subgenital plate (Fig, 8) very large, setose and papillate, the papillae arranged roughly in transverse rows. Gonapophyses (Fig. 7). Material Examined: SOUTH AUSTRALIA. \mp (holotype), ex dry sclerophyll Eucalyptas Jitter, Melrose, Flinders Ranges, 16.iv.1973. M. R, Gray. Paratypes; 2 早, as holotypes. Holotypes and paratypes in the Australian Museum.

Discussion: Pachydroctes rugosus differs from P. achrosta Thornton and Woo (from the Galapagos) in lacking postclypeal striations and pale thoracic terga. The gonapophyses are similar in shape but the external valve of P. rugosus lacks a sensillum. It differs from P. tapinelloides Badonnel (from Africa) in having the fourth and fifth antennal segments annulated. P. australis Ribaga, P, dichrammoscelis Badonnel and P, granulosus Badonnel (all African) differ in having the sculpturation of the vertex in the form of fine granulations, not barsbaped ridges. In R. bicoloripes Badonnel (African), P. insularis Thornton and Woo (Marianas) and P_{\cdot} nivecinctus Badonnel (African) the metathorax is white, In P. aglypha Badonnel (African) the sculpturation of the head is indistinct and, as in P. aurantiacus Badonnel (African) and P. ambiguus Badonnel (African) there are no granulations between the ommatidia.

The only previous record of this genus from Australia is that of an unidentified species taken from bags of peanuts in shell at Kingaroy, Queensland,

Family SPHAEROPSOCIDAE

Sphaeropsocopsis recens (Hickman)
Sphaeropsocus recens Hickman, 1934. Occ. Pap. R, Soc, Tasm. 1933: 83, Figs, 4A-4E,
Sphaeropsocopsis recens (Hickman), Badonnel, 1963. Biol. I'Amerique australe 2: 291, 323.

Material Examined: SOUTH AUSTRALJA. 1 if ex Eucalyptus litter, dry sclerophyli, Melrose, Flinders Ranges, 16.iv-1973, M. R. Gray. 1 年, Mt. Lofty, 26.iv. 1943, H. Womersley,

This small interesting species was described from dry grass tussocks in Tasmania (Hickman 1934). The genus is known also from Chile and Angola. The closely related genus Sphaeropsocus Hagen is known from one species in Baltic amber.

Family CAECILITDAE Caecilius semifuscatus (Tillyard)

Maoripsocus semifuscatus Tillyard, 1923. Trans. N.Z. Inst, 54: 191, Fig. 16; P1. 18, Fig. 11.

Caecilius semifuscatus (Tillyard). Smithers, 1969. Rec. Canterbury Mus, 8: 280, Figs. 44-48.

Material Examined: SOUTH AUSTRALIA. 20 © 23 9. Wirrulla, ESE Ceduna, 28.ix.1978, M. S. and B. J. Moulds. $10^{\circ}, 1$ \&, 50 km WNW Ceduna, 28 ix. 1978, M. S. and B. J. Moulds, 12 9, Pooginook Park, 13-16.vi.1979, G. A. Holloway. 1 ?, 20 km SE Pt. Augusta, Horrock's Pass, Flinders Ranges, 17.vi. 1979, G. A. Holloway. 2 \%, 15 km N Port Broughton, 7,y.1980, G. and J. Holloway, 1 क, 10 $\mathrm{km} N$ Gootwa, 13.v.1980, G, and J. Holloway, 1 of, 18 km N Ardrossart, 8.v.1980, G. and J. Holloway. 1 of, Telowie Gorge, 10 km E Port Germein, 20.v. 1981, G., J. and A. Holloway.

This species, originally described from New Zealand, has also been recorded from Curtis Island, Bass Strait. These records are the first from the Australian mainland.

Family STENOPSOCIDAE

Steropsocus striatifrons (McLachlan)

Psocus striatifrons McLachlan, 1866. Trans. ent, Soc. Lond. (3) 5: 351.

Stenopsocus striatifrons (MeLachlan). McLachlan, 1866, Trans. ent. Soc. Lond. (3) S: 352.
This species was described from "Australia meridionali" and is not represented in the present material. The original locality may not have been in South Australia and nothing referable to this species has since been reported in the literature,

Family LACHESILLIDAE
 Lachesilla pedicularia（L．）

Hemerobius pedicularius Linnaeus，1758．Systema Naturae p．551．

Lachesilla pedicularia（L．）．Enderlcin，1919．Cat． Coll．Selys Longchamps 3 （2）： 16.
For complete synonymy see Smithers（1967）．
Material Examined：SOUTH AUSTRALIA， 1 if， in packing straw from England，Adclaide，v． 1937.

L．pedicularia is a very widespread species being known from the Palearctic Region，Comoros，Argen－ tina and South Marianas．There is one previous Australian record，from Victoria．

Family ECTOPSOCIDAE

Ectopsocus californicus（Banks）
Peripsocus californicus Banks，1903．J．N．Y．ent． Soc，11： 237.

Ectopsocus californicus（Banks）Badonnel， 1955. Pul，cult．Comp．Diam．Angola 26： 185.

Ectopsocus congener Tillyard．Smithers，1969．Rec． Canterbury Mus． 8 （4）：289，Figs．71－75．

Material Examined：SOUTH AUSTRALIA， 1 it， 9 km S Edithburgh， $7 . \mathrm{v}, \mathrm{J} 980$ ，G，and J．Holloway， 1 6＂， 2 星，Mt，Alma， 12 km SW Victor Harbor， 12．v．1980，G．and J．Holloway， 1 ot， 4 km N Murray Bridge，22．v．1981，G．and A．Holloway．

This species is known from North America，New Zealand and Antipodes Islands；previous Australian records are from Tasmania and New South Wales，

Ectopsocus cetratus Smithers

Ectopsocus cetratus Smithers，1972，Aust，Zool． 17 （1）：15，Figs．1－8．
Material Examined：SOUTH AUSTRALIA． 7 d． 36 号， 3 km E Nundroo， $132^{\circ} 30 \mathrm{E}, 31^{\circ} 50^{\circ} \mathrm{S}$ ，29．ix． 1978，M．S．and B．J．Moulds． 5 of Wilmington， Flinders Ranges，6．v．1980，G，A．Holloway． 2 if， 50 km WNW Cedona， $28 . \mathrm{ix} .1978$ ，M．S．and B．J． Moulds． 3 fr $^{\prime}, 10$ 足， 40 km E Nullarbor， $131^{\circ} 15^{\circ} \mathrm{E}$ ， $31^{\circ} 25^{\prime}$ S， $29 . \mathrm{ix} .1978$, M．S．and B．J．Moulds． 2 9， Yalata， $131^{\circ} 45^{\circ} \mathrm{E}, 31^{\prime \prime} 30^{\prime}$ S， $29 . \mathrm{ix} .1978, \mathrm{M} . \mathrm{S}$ ．and B．J．Moulds．

This species was described from Western Aus－ tralia；these are the only subsequent records for the species．

Fanily PERIPSOCIDAE

Peripsocus edwardsi New
Peripsöcus edwardsi New，1973．I．Aust．ent．Soc． 12：40，Figs．1－6．

Material Examined：SOUTH AUSTRALIA， 3 of 1 q， 20 km ．SE Port Augusta，Hórrock＇s Pass，Flin－ ders Ranges， $17 . v i .1979$ ，G．A．Holloway． 3 \＆， Germein Gorge，Flinders Ranges， $11,5 \mathrm{~km} E \mathrm{Pt}$ ． Germein，7．vi．1979，G．A．Holloway． 2 of 2 i， Germein Gorge，19．w．1981，G，and J．Holloway．

This species，in which the females are brachyp－ terous，has previously been recorded only from Victoria．

Peripsocus maoricus（Tillyard）

Peripsocopsis maoricus Tillyard，1923．Trans．N．Z． Inst．54：194，Fig．18；P1．18，Fig． 12.

Peripsocus macropterus Edwards，1950，Pap，R，Soc： Tasm．1949：124，Figs．89－94．

Peripsocus maoricus（Tillyard）．Thornton and Wong，1968．Pacific Ins，Monogr．19：10， 135.

Material Examined：SOUTH AUSTRALIA． 30 oै， 23 9， 6 km W Kapunda， $18 . v i .1979$, G．A．Hollo－ way， 2 8， 6 早， $5 \mathrm{n}, 9 \mathrm{~km} \mathrm{~S}$ Edithburgh，7．v． 1980 ， G．and J．Holloway． 7 है， 17 i， 2 n，Spring Gully Park， 9 km SSW Clare，18．vi．1979，G．A．Hollo－ way． 1 ？P Pooginook Park，15．vi．1979，G．A．Hollo－ way． 3 J，Germein Pass，Flinders Ranges，6．v．1980， G．and J．Holloway， 17 of， 17 \％，Germein Gorge， Flinders Range， 11.5 km E Pt，Germein，7．vi．1979， G，A．Holloway． 1 de，Wirrulla，ESE Ceduna， 28 ix． 1978，M．S．and B．J．Moulds． 21 8， 55 i．， 23 n， 25 km E Peake，23．vj．1979，G．A．Holloway． 19 8， 21 ㅇ， $1 \mathrm{n}, 23 \mathrm{~km}$ E Tailem Bend，13．v． 1980 ， G．and A．Holloway， 12 d， 24 9， 15 km W Tailem Bend，13．v．1980，G．and A．Holloway． 9 of， 19 of， 2 km E Parilla，23．vi1979，G．A．Holloway． 11 ठ＇， 7 if， $3 \mathrm{n}, 4 \mathrm{~km}$ E Pinnaroo， $14, \mathrm{v} .1980$ ，G．and J． Holloway． 2 6， 2 q， 4 km S．Moonta，7．v． 1980 ，G． and J．Holloway， 2 d， 1 o， 18 km N Ardrossan， 8．v．1980，G．and J．Holloway．1 है， 6 ㅇ， $9 \mathrm{n}, 10 \mathrm{~km}$ N Goolwa，13．v．1980，G．and J．Holloway． 69,20 单， $41 \mathrm{n}, 16 \mathrm{~km}$ S Minlaton， 7. v．1980，G．and J．Hollo－ way， 2 \＆ 13 定，Adelaide， $22 . \mathrm{ix} .1965$ ，H．Womersley． 8 s， 10 ？ $7 \mathrm{n}, 12 \mathrm{~km}$ SE Port Wakefield， $8 . v, 1980$ ， G．and J．Holloway， 4 है， 2 i， $19 \mathrm{n}, 2 \mathrm{~km}$ W Wil－ liamstown， $8, v, 1980$, G．and J．Holloway． 3 ot ex Cypress Pine，Alligator Gorge Rd．，near Mt．Re－ markable，Flinders Ranges，17．iv．1979，G．Hollo－ way． 3 早，W end of Horrock＇s Pass，19．v．1981，G． and J．Holloway 10 कt， 17 fo，ex Casuarina，Mt， Gambier，23，v．1981，G，，J．and A．Holloway． 30 ot， 55 星，Germein Gorge，19－20．v．1981，G，and J．Hol－ loway． 6 d， 10 年，Burra Gorge， 20 km SSE Burra， 21．v．1981，G．，J．and A．Holloway， 1 万， 2 km SE Williamstown，22．v．1981，G．and A．Holloway， 1 d， Telowie Gorge， 10 km E Pt．Germein，20．v．1981， G．and J．Holloway．

Peripsocus maoricus appears to be widely distributed, at least through the southern part of the continent and Tasmania, It has been recorded from Tasmania, Victoria, Western Australia and now from South Australia. It was originally described from New Zealand.

Peripsocus notialis sp. n.

Male

Coloration (in alcohol): Head pale brownish cream with pale brown markings. A few brown marks close against upper margin of compound eyes

FIGS. 11-16. Peripsocus notialis sp. n. 11. \& Fore wing. 12. Phallosome. 13. Subgenital plate, 14, 오 Fore wing. 15, it Paraproct. 16. Gonapophyses.
and across vertex with broken patch on either side of median epictanial suture netr back of head. Postclypeus with anteriorly converging, pale browu stripes not reaching anteclypeus. Genac and labrum as head. Antennac and maxillary palps brownish. Eyes black. Ocellat tubercle brownish. Lohes of mesothoracic notum pale brown ${ }_{3}$ parapsidal sulures paler than lobes. Legs pale brownish cream with slightly darker tarsi. Fore wing (Fig. 11) hyaline, uniformly very lightly tinged with pale brown; pterostigma opaque but not darker than rest of membrane, Hind wing membrane as fore wing. Veins brown, all well developed, mone evanescent, Abdomen pate; phallosome sclerifications indistinctly visible through hypandrium.

Morphology: Median epicranial suture distinct; anterior arms evanescent. Antennae much thicker than in female. Lengths of flagellar segments: f_{1} : $0.68 \mathrm{~mm} ; \mathrm{f}_{2} ; 0.48 \mathrm{~mm}$. Eyes large, reaching well above level of vertex. Faccts exceptionally laige; eye emarginate where almost in contact with antenna base. IO/D: 0.80; PO: 1.0. Ocelli large; on well developed tubercle. Lacinia very narrow near distal end, hardly divided apically. Fourth segment of maxillary palp lonig, parallel sided with rounded apox, four times long as wide. Measurements of find leg: $F: 0.60 \mathrm{~mm} ; T: 1.16 \mathrm{~mm} ; t_{1}: 0.32 \mathrm{~mm}$; $\mathrm{t}_{2}: 0,16 \mathrm{~mm} ; \mathrm{tt}: 2: 1$; $\mathrm{ct}: 22,0$. Legs long and narrow. Fore wing (Fig. 11) with fairly broad costal cell. $\mathrm{Cu} u_{1}$-cyanescent just before margin. Fore wing length: 4.0 mm ; width: 1.6 mm . Hind wing length: 3.0 mm ; width: 1.1 mm . Epiproct triangular with angles rounded, setose, sparsely spiculate in median area near base; spicules very small. No clunial comb, Paraproce simple, ovoid, with very large circular trichobothrial field, the setae long and fine. Hypandrium simple, with a broad sclerotized band parallel with hind margin; margin interrupted in middle; setose. Phallosome (Fig. 12) closed anteriorly with distinetly sclerofized margin interrupted posteriorly. Sclerification of penial bulb heavys of two, posteriorly outwardly curving selerites subtended by a complex set of symmetrically arranged sclerites.

Female

Coloration (in alcohol) : As male but marks on head a litule more extensive. Fore wings (Fig. 14) as in male but costal cell, anterior half of coll R and anterior part of cell R_{1} as far as apex of pterostigma hyaline, contrasting with the very pale browish tinge in rest of membrane. Hind wing hyaline, faintly tinged with pale brown along veins. Terminal abdominal structures browis,

Morphology: Length of body: 2.3 mm , Lengths of flagellar segments: $\mathfrak{f}_{1}: 0,40 \mathrm{~mm} ; \mathrm{f}_{2}: 0,26 \mathrm{~mm}$.

Antennae much finer than in males. Eyes fairly small, much smaller than in males. $10 / \mathrm{D}: 1.7 ; \mathrm{PO}: 0,75$ Measurements of hind leg: F: $0.52 \mathrm{~mm} ; \mathrm{T}: 0.96$ $\mathrm{mm} ; \mathrm{t}_{1}: 0.20 \mathrm{~mm} ; \mathrm{t}_{3}: 0.16 \mathrm{~mm} ; \mathrm{rt}: 1.3: 1 ;$ ot 8,0 , Fore wing length; 2.8 mm ; width: 1.1 mm . Fore wing (Fig. 14). Hind wing Jength: 2.2 mm ; widd): 0.8 mm . Epiproct (Fig. 15), Paraproct (Fig. 15) simple, with small trichobothrial field, the setae long and fine, Subgenital plate (Fig. 13). Gonapophyses (Fig. 16).

Material Examined: SOUTH AUSTRALIA. ठ (holotype), $\Phi_{\text {(allotype), ex cypress pine, Alligator }}$ Gorge Rd., near Mt. Remarkable, Flinders Range, 17.vi.1979, G. A. Holloway. Paratypes: 5 d, 19 早, as holotype (one f on slide). Other material: 5 nymphs, as holotype.

Holotype, allotype and paratypes in the Austration Museum.

Discussion: Peripsocus notiolis is a species which is somewhat sexually-dimorptric, The female bus the anterior part of the wing byaline in contrast to the uniformly coloured wing of the male. The female wings are considerably shorter than in the large male. and the legs are stouter, with fewer etenidia not regular in arrangement. In general arrangement the sclerifications of the penial bulb resemble these in P. norfolkensis Smithers \& Thornton and P. maoricus (Tillyard) but differ in proportion and shape. The female differs in 1O/D ratios and in witg colout. Proportions of the gonapophyses also differ but they resemble each other in having a broad ventral valve. Pecipsocus notialis is similar in size to P. edwordsi New but differs in having much paler wings. In P. edwardsi the wing membrane is faintly tinged with grey but there are discrete hyaline patches in most cells. In P, notialis the male fore wing membrane is very faintly but unformly tinged with pale brown. In the female the costal cell and a narrow strip behind R and R_{1} is hyaline. The female is somewhat brachypterous. There are slight differences in proportions of the gonapophyses and alltrough similar ju general structure, the male phallosome has differently proportioned sclerifications of the penial bulb, In P, hamilhonae Smithers, a slightly smadler species, there is a distinet darkening across the wing from stigmapophysis to nodulus, which is not present in $P_{\text {- }}$ noñalis. P. hickmani New is a much smaller species than P, notialis with a fore wing length of less than 3 mm as opposed 10 that of 4 mm for $P_{\text {, }}$ notialis. In P, hickmani there is a liffle pigmentation adjacent to the basal section of Rs and M basad of fusion with Rs which is absent from P. monistis. The phallosome in P. notialis hats at transverse anterior border with complex sclerification of the penial bulb and narrow, outwardly curved external parameres, In P. hickmani the phallosome
tapers to a broken, narrow anterior end and the external parameres are broad and short; the sclerifications of the penial bulb are simpler, being in the form of a few longitudinal rods and a rugosely sclerotized bulbous area, P_{2} maoricus has a distinctive three lobed apex to the arch formed by the distally fused innex parameres and the wing is uniformly more darkly tinted than in P, notialis. P. notialis is much larger than P. melalencae New. The female of P, melalencae has tapering lateral extensions of the sclerotized area of the subgental plate; these areas are broad in $P_{\text {, }}$ notialis. The phallosome of P. melalencte has short, broad, external parameres, In P. millerl (Tillyard), P. morulops (Tillyard) and P. tillyardi New the wings are much darker in general with even darker areas along some of the wing veins. In P. roseus Smithers the pterostigma is distinctively reddish in the distal half in life (this color fades in alcohol). The main veins have dark and light sections which give a distinctive appearance of being broken and disconlinuous.

Male

Peripsocus hollowayi sp, n.
Coloration (in alcohol): Head very dark brown except for a paler area between ocellar tubercle and antenna base, narrowing laterally to proximity of
compoand eye and epistomial suture and a similar pale narrow stripe from this area towards back of head on each epicranial plate. Postclypeal stripes hardly discernible (might be more easily seen on paler specimens?). Labrum coloured as bead. Antennae dark brown, Maxillary palps dark brown. Eyes black. Ocellar tubercle very dark brown. Mesothoracic notum very dark brown, facking pale median stripe; fateral lobes each with a narrow paler mark running from scutellum to lateral margin near wing base; a pale spot where parapsidal sutures converge, Coxae dark brown. Legs pale brown. Fore and hind wings hyaline with dark brown veins. Abdomen pale, terminal structutes very dark brown, the large, broad phallosome clearly visible through paler integument of abdomen.

Morphology: Median epicranial snture very distinct, as is epistomial suture, Length of flagellar segments: $\mathfrak{f}_{1}: 0.56 \mathrm{~mm} ; \mathrm{f}_{2}: 0.40 \mathrm{~mm}$. Eyes only moderately large, small for a male. $10 / \mathrm{D}: 1.7$; PO: 0.88 . Lateral ocelli large, anterior ocellus much smaller. Measurements of hind leg: $F: 0.62 \mathrm{~mm} ; T$: $1.28 \mathrm{mim} ; \mathrm{t}_{3}: 0.28 \mathrm{~mm} ; \mathrm{t}_{2}: 0.14 \mathrm{~mm} ; \mathrm{rt}: 2.1$; ct: 15,0 . Fore wing length: 3.3 mm ; width: 1.2 mm . Hind wing length: 2.5 mm , width: 0.8 mm . Pterostigma fairly shatlow, hind angle not pronounced, shallowly rounded. Epiproct (Fig. 19) heavily

EIGS, 17-20. Peripsocus hollowayi sp. ロ. 17. Pballosome. 18. Hypandrium, 19. © Epiproct. 20. Periprocus hickmani Phallosome.
sclerotized, with semicircular hind margin very strongly sclerotized and a small posterior median membranous extension with rounded hind margin. Paraproct well selerotized with large, circular trichobothrial field. Hypandrium (Fig. 18) (damaged in preparation) with median emargination, tightly sclerotized except for a broad, well-sclerotized medially interrupted band parallel with hind margin. Phallosome (Fig. 17) well sclerotized, broad, rounded anteriorly; external parameres broad; internal parameres distally fused, ending in a pair of blunt processes. Sclerifications of penial bulb heavy, symmetrically arranged.

Material Examined: SOUTH AUSTRALIA, 1 of (hototype), ex cypress pine, Alligator Gorge Rd., near Mt. Remarkable, Flinders Ranges, 17 vi.1979, G. A. Holloway. Paratype; 1 है, Germein Gorge, Flinders Ranges, 11.5 km E Pr. Germein, 7.vi.1979, G. A. Holloway:

Holotype and paratype in the Australian Museum.
Discussion: Peripsacus hollowayt is a large species with dark head and thorax and hyaline wings. The broad phallosome, with broad, external parametes and two short posterior processes with heavily sclerotized peniat bulb selerifications is characteristic and distinguishes it from all other species.

Peripsocus hickmani New

Peripsocus hickmani New, 1973. J. Aust. ent. Soc. 12: 341, Figs 5, 7-10.
When this species was described from Victoria (New 1973, p, 341, Figs 5, 7-10) male material was not available. The males in the present material permit description of that sex here.

Male

Coloration (in alcohol): As female (New 1973, p. 341).

Morphology: Length of bödy: 2.2 mm . Median epicranial suture very clearly defined. Lengths of Alagellar segments: $\mathrm{f}_{1}: 0.40 \mathrm{~mm} ; \mathrm{E}_{2}: 0,30 \mathrm{~mm}$. Antennac shorter than in female. Eyes fairly large, larger that in female but only just reaching level of vertex. IO/D: $1.2 ;$ PO: 0.81. Measurements of hind leg: $\mathrm{F}: 0.44 \mathrm{~mm} ; \mathrm{T}: 0.92 \mathrm{~mm} ; \mathrm{t}_{1}: 0.20 \mathrm{~mm} ; \mathrm{t}_{2}$: 0.12 mm ; st: $1.7 ; 1 ; \mathrm{ct}: 16,0$. Fore wings as in female (New 1973, Fig. 7). Fore wing length: 2.8 mm ; width: 1.1 mim . Hypandrium simply rounded behind, not medially emarginate, a broad, lightly sclerotized band parallel with margin, slightly interrupted in midline. Phallosome (Fig. 20) similar to that of P. tillyardi New (1973, Fig. 12) but broader; sclerifications of penial bulb symmetrical.

Material Examined: SOUTH AUSTRALIA, 1 os. 1 ㅇ, Yalata, $131^{\circ} 45^{\circ} \mathrm{E}, 31^{\circ} 30^{\prime}$ S, 20.ix. 1978 , M. S. and B. J. Moolds, 3 d, 6 早, 18 km N Ardrossan, 8.v.1980, G. and J. Holloway.

Discussion: The male phallosome of P. hickmani resembles that of P. itlyard in general form but differs in being wider in relation to length and in having the external parameres almost is wide as long, whereas in P. tillyardi trey are more elongate, distinctly Longer than wide.

Family PSEUDOCAECILIDAE

Cladioneura punctata sp. n.

Eemale

Coloration (in alcohol): Head ivory, with very faint suggestion of median brown band from vertex to labrom and very pale greyish patch mesad of each compound eye. Median epicranial suture not obviously coloured. Antennae pale brown, a small section at the distal end of each flagellar segment paler. Eyes black. Ocellar tubercle very dark brown, conspicuous against otherwise pale head. Labrum browh. Maxillary palps pale, tip of fourth segment very dark brown. Mesonotum with dark brown antedorsum and lateral lobes; parapsidal sutures pale, Metanotum with lateral lobes brown. Pleura mainly brown. Coxae brown basally, pale distally. Femora pale, without dark bands. Tibiae pale. Tarsi brown. Claws black. Fore wings (Fig, 21) hyaline with dark brown markings. Hind wings hyaline with a faint infuscation adjacent to basal section of Rs and M between separation from Cu_{1} and fusion with Rs . Abdomen pale with a few spots on each segment: the dorsum of the ninth tergite, in particular, has an irregular row of darker, larger spots which are conspicuous. Epiproct and paraprocts are pale.

Morphology: Length of body: 2.5 mm . Median epicranial suture distinct, anterior arms Jess conspicuous. Head, except anteclypeus and genac, with strongly developed erect setae, those on postclypeus shorter and finer than most of those on vertex. Lacinia (Fig. 25). Length of flagellar segments: i_{i} : $0.40 \mathrm{~mm} ; \mathrm{f}_{2}: 0.28 \mathrm{~mm}$. Eyes fairly small, not reaching level of vertex, IO/D: 2.9; PO; 0.7. Ocelli large, anterior ocellus about as large as lateral ocelli. Measurements of hind leg: $F ; 0.52 \mathrm{~mm} ; \mathrm{T}: 0.96$ $\mathrm{mm} ; \mathrm{t}_{1}: 0.28 \mathrm{~mm} \mathrm{t}_{\mathrm{g}} ; 0.14 \mathrm{~mm} ; \mathrm{rt}: 2: 1$. Ctenidiobothria absent. Fore wing length; 2.3 mm ; width: 0.9 mm . Fore wing (Fig. 21) with veins evanescent in many places; strong setae arise in two rows mostly alongside rather than on veins, Cu_{2} without setae, Hind wing length: 1.8 mm ; width: 0.7 mm . Veins sparsely setose only in distal part of wing (Fig. 22). Epiproct almost semicitcular with small setae on posterior half and a series of strong setae along

FIGS. 21-25, Cladioneura punctata sp. n. 21. ㅇ. Fore wing. 22. 아 Hind wing, 23. Gonapophyses. 24, Subgenital plate. 25. 오 Lacinia
posterior part of margin. Paraproct simply rounded behind, setose in posterior half with strong posterior marginal setae. Trichobothrial field of about 9 trichobothria, poorly defined. Subgenital plate (Fig. 24) posteriorly bilobed, each lobe with a few strong marginal setae, variable in number (holotype with four on right lobe and two on left). Gonapophyses (Fig. 23).

Male

Unknown,

Material Examined: SOUTH AUSTRALIA. (holotype), 15 km N Ardrossan, 8.v. 1980, G. and J. Holloway. Paratypes; 2 q, as holotype. 1 i. 16 km S Minlaton, 7.v.1980, G. and J. Holloway.

Holotype and paratypes in the Australian Museum.

Discussion: Cladioneura punctata differs from C, pulchripennis Enderlein in details of wing pattern, fore wing development and shape of the tip of the lacinia. In C. punctata the most conspicuous wing colour difference is the absence of pigment over most of cell M_{3} adjacent to the areola postica and
the presence of a spot in cell R_{5} at the basal quarter. The wings in C. punctata are relatively short and broad being only 2.3 mm long for a body size of 2.5 mm , whereas in C. pulchripennis the fore wings approach 3.0 mm for the same body size. The lacinia is broader at the apex in C. punctafa. The gonapophyses are similar but differ a little in proportions. In C. punctata the marginal setae of the subgenital plate are in two groups whereas in C. pulchripennis the four setae are more evenly spaced across the hind margin, C. pulchripennis is the only other species in the genus.

Family ELIPSOCIDAE
 Pentacladus eucalypti Enderlein

Pentacladus eucalypti Enderlein, 1906. Zool. Jb. 23: 408; Pl. 23, Fig. 7.

Material Examined: SOUTH AUSTRALIA. 2 ठ, Ravine des Casoars, Kangaroo Is., 28.x.1951, G. F, Gross,

This species has been tecorded from New South Wales, Tasmania, Victoria and Queensland.

Propsocus pallipes (McLachlan)

Psocus pallipes McLachlan, 1866. Trans. ent. Soc. 3 ser. 5: 349.

Propsochar pallipes (Mclachlan). McLachlan, 1866. Troms. entr. Soc, 3 ser, 5: 352.

Tricladus froggatii Enderlein, 1906. Zool. Jb. 23: 410; Pl. 23, Fig 6.

Tricladellus froggati (Enderlein). Enderlein, 1909. Stertin. com. Ztg. 70: 273.

Material Examinel: SOUTH AUSTRALTA. 1 oै. 15 km SW Tailem Bend, 13.v.1980. G. and A. Holloway.

Originally described from Adelaide, this species is known from New South Wales, Tasmania, Quecnsland and Western Australia. It has not yet been recorded from Victoria but it seens likely that it will be found there.

Spilopsocus masseyi New

Spilopsocus masseyi New 1971. J. Aust. cut. Soc. 10: 226, Figs. 7-13.

Material Examined: SOUTH AUSTRALIA, 1 d, Port Elliot, 13.v.1980, G. and J. Holloway. 1 dै, Scal Bay, Kangaroo Island, 2-4.xii.1977, D. K. McAlpine and M. A. Schneider, $18,40 \mathrm{~km} \mathrm{~W}$. Nullarbor, $130^{\circ} 29^{\circ} \mathrm{E}, 31^{\circ} 28^{\prime}$ S, 29.ix. 1978 , M. S. and B. J. Moulds.

This species is recorded from Tasmania, New South Wales and Victoria.

Spilopsocus ruidis Smithers

Spilopsocus ruidis Smithers, 1963. Pacific Ins. 5 (4): 894, Figs. 19-25.

Material Examined: SOUTH AUSTRALIA. 1 ot, Yalata, $131^{\circ} 45^{\circ} \mathrm{E}, 31^{\circ} 30^{\circ} \mathrm{S}, 29 . \mathrm{ix} .1978, \mathrm{M}$. S. and B. J. Moulds.

Spilopsocus ruidis has previously been recorded only from New South Wales.

Family Philotarsidate

Austropsocus sinuosus (Banks)
Zolardapsocus siluosus Banks, 1939. Bull. Mus. comp. Zool. Harv. 85: 441, Fig. 12.

Austropsocus simusus (Banks). Thornton and New, 1977. Aust. J. Zool. Suppl. ser, 54: 28, Figs. 99104.

This species was originally deseribed from South Australia (Mt. Lofty Range) but is not represented in the present material.

Haplophallus gutratus (Tillyard)

Philotarsus guttutus Tillyard, 1923. Jrans. N.Z. Inst. 54: 181, Fig. 8.

Philotarsopsis delicalus Tillyard, 1923. Trans. N.Z. Thst. 54: 182, Fig. 9.

Philolursus greyi Edwards, 1950. Pap. R. Soc. Tasm. 1949: 116, Figs. 68-75.

Haplophallus grevi (Edwards). Smithers, 1963. J. ent. Soc: Qd. 2: 60.

Haplophallus suttatus (Tillyard). Smithers, 1969. Rec. Canterbury Mus, 8: 322, Figs. 158-162.

Material Exanined: SOUTH AUSTRALIA. 1 os, 15 ㅇ, 40 km E Nullarbor, $131^{\circ} 15^{\prime} \mathrm{E}, 31^{\circ} 25^{\prime} \mathrm{S}, 29$. ix. $1978, \mathrm{M}, \mathrm{S}$. and B. J. Moulds. 1 d, 7 i, 3 km E Nundroo, $132^{\circ} 30^{\prime} \mathrm{E}, 31^{\circ} 50^{\prime} \mathrm{S}, 29 . \mathrm{ix} .1978, \mathrm{M}, \mathrm{S}$. and B. J. Moulds. 1 dr, 1 ㅇ, Myponga, H. M. Halc.

Haplophallus guttatus has been recorded from many localities in New South Wales, Victoria, Western Australia and Tasmania. It is also known from Qucensland and was originally described from New Zealand.

Haplophallus bundoorensis New
Maplophallus bumloorensis New, 1971, J. Abst. ent. Soc. 10 (1): 25, Figs. 1-10.

Haplophallus capitulatus Smithers, 1972. Aust. Zool. 17 (1): 19, Figs. 12-17.

Marerial Examined: SOUTH AUSTRALIA. 9 ס゙, 5 ㅇ, 6 km W Kapunda, 18.vi.1979, J. Holloway, 2 3, 50 km WNW Ceduna, 28.iv.1978, M. S. and B. J. Moulds.
H. bundonrensis is known from Victoria, Queensland and South Australia.

Haplophallus medialis Thornton and New

Raplophallus medialis Thornton and New, 1977. Aust. J. Zool. Suppl. Ser., 54: 13, Figs. 26-32, 36.

Material Examined: SOUTH AUSTRALIA, 7 specimens ex Eucalyptus obliqua dry sclerophyll forest, Naracoorte Cave Reserve, 25.x.1958, G. F. Gross.

This species was previously recorded from New South Wales, A.C.T., Victoria and South Australia.

Haplophallus sinus Thornton and New

Haplophallus simus Thornton and New, 1977. Aust. J. Zool. Suppl. ser. 54: 20, Figs. 60-68.

Material Examined: SOUTH AUSTRALTA. 1 ©, Mt. Alma, 12 km SW Victor Harbor, 12.v.1980,
G. and J. Holloway. $1 \delta, 10 \mathrm{~km}$ N Goolwa, 13.v. 1980, G. and J. Holloway. 3 万, 1 ㅇ, cx Casuarina, Mt. Gambicr, 23.v.1981, G., J. and A. Holloway. 1 s, Yourambulla Caves, 6 km SW Hawker, 18.v. 1981, G. and J. Holloway.
H. sinus is known previously from only one New South Wales locality.

Aaroniella rawlingsi Smithers

Aaroniella rawlingsi Smithers, 1969. Rec. Canterbury Mus. 8: 324, Figs. 163-168.
Aaroniella pallida New, 1971. J. Aust. ent. Soc. 10 (1): 29, Figs 11-21.

Material Examined: SOUTH AUSTRALIA. 1 ©゙, Mt. Gambier. 23.v.1981, G., J. and A. Holloway.

Originally described from New Zealand this species has been rccorded from Victoria, New South Wales, Australian Capital Territory and Western Australia.

Family MESOPSOCIDAE

Mesopsocus reticulatus sp. n.

Male

Coloration (in alcohol): Head brown, very slightly darker on either side of median epicranial suture and dorsad of compound cyes, lacking the discrete spotting usual in the genus. Median cpicranial suture dark brown. Postclypeus brown, anteclypcus pale. Labrum and genae brown. Antennac brown. Eyes black. Ocellar tubercle a little darker than surrounding area. Maxillary palps with all four segments brown. Mesonotum brown, parapsidal sutures pale brown. Pleura brown, a reddish mark laterally on hind part of mesopostnotum. Legs brown. Forc wings (Fig. 26) hyaline, vcins and pterostigma brown. Abdomen palc, icrminal structures brown.

Morphology: Length of body: 2.2 mm . Median cpicranial suture distinct, anterior arms absent.

FIGS. 26-29. Mesopsocus reticulatus sp. n. 26. of fore wing. 27. © Epiproct and paraproct. 28. Phallosome. 29. Hypandrium.

Head small，finely pubescent；vertex arched．Sculp－ turation of head on vertex and frons consisting of a well defined polygonal pattern of raised ridges，that on postclypeus of a scrics of irregular，fine，trans－ verse ridges．Postclypeus not exceptionally bulbous but reflexed anteriorly so that the anteclypeus is somewhat set back．Posterodistal row of sensilla on anterior margin of labrum made up of three placoid sensilla and two trichoid sensilla almost in a straight line．Anterodistal row of four sensilla，Lengths of flagellar segments（in mom．）$: \mathrm{f}_{1}: 0.39 ; \mathrm{f}_{2}: 0.23$ ； $\mathrm{f}_{3}: 0.21 ; \mathrm{f}_{4}: 0.19 ; \mathrm{f}_{7}: 0.14 ; \mathrm{f}_{6}: 0.14 ; \mathrm{f}_{7}: 0.12$ ； $\mathrm{f}_{8 .}: 0.10 ; \mathrm{f}_{10}: 0.09 ; \mathrm{f}_{10}: 0.08 ; \mathrm{f}_{111}: 0.08$ ．Antennae fairly short，tip mucronate．Total length： 1.81 mm ． Eyes fairly lasge，somewhat protruding but not reaching level of vertex． $10 / \mathrm{D}: 2.0 ; \mathrm{PO}: 0.86$ ．Ocelti large．Pedicel with two conical sensilla；first flagellar segment with one sensillum with minute point at basal quarter，Fourth and tenth flagellar segments each with a similar sensillum at distal end．Sixth llagellar segment apparently lacks a sensillum．Legs slender．Measurements of hind Jeg：F： 0.47 mm ； T： $1.00 \mathrm{~m} ; \mathrm{t}_{1}: 1.19 \mathrm{~mm} ; \mathrm{t}_{2}: 0.07 \mathrm{~mm} ; \mathrm{t}_{3}: 0.08 \mathrm{~mm}$ ； $\mathrm{rt}: 2.7: 1: 1.1 ; \mathrm{ct}: 10,0$ ， 0 ．Fore wing length； 3.5 mm ；width： 1.25 mm ．Fore wings（Fig．26）with long，narrow pterostigma， R_{1} gently curving． Rs before junction with M slightly curved；fusion with M fairly short．Radial fork about as long as stem． $\mathrm{Cu}_{1 \mathrm{u}}$ slightly curved before rounded apex of areola postica so that basal side of areola postica is slightly concave．Hind wing length： 2.6 mm ；width： 0.8 $\mathrm{mm} . \mathrm{Cu}_{2}$ and IA not strongly curved near wing margin．Four minute setae on margin between R_{2+3} and R_{4+5} ，readily visible only at magnifica－ tion greater than about $50 \times$ ．Epiproct（Fig．27）． Paraproct（Fig．27）．Hypandrium（Fig．29）．Phallo－ some（Fig，28）narrowing anteriorly and posteriorly with bluntly pointed anterior end to phallic frame． Penial bulb with strong，symmetrical sclerifications． Acdeagal arch narrow，slightly angled distally． External pacameres broad apically，with conspicuous extension but obliquely truncate distally．
Material Examined：SOUTH AUSTRALIA，\＆ （holotype），Germein Gorge，Flinders Range， 11.5 km E．Pt．Germein，17，vi，1979，G．A．Holloway．

Holotype in the Australian Museum．
Discussion：Mesopsocus reticulatus is the first species of the family to be reported from Australia； the genus has previously been recorded from Africa， Europe，Asia and North and South America．

Most species have a distinctive and striking head pattern made up of spots and stripes on the vertex and have the more or less clearly defined postcly－ peal stripes so characteristic of many psocopterans． Mesopsoous relicnlatus obviously differs at first sight in lacking this patterning．The head is almost uni－
formly brown．The antennae are unusually short and the truncate form of the apex of the external parameres and the clearly defined，symmetrical sclerifications of the penidel bulb differ in those species in which these structures have been described，

Unfortunately only one specimen，a male，is available；it is possible that the female，as in many other species of Mesopsocus，is apterous．

Family PSOCIDAE

Lasiopsocus michaelseni Enderlein

Lasiopsocus michaelseni Enderlein，1907．Fauna S．W，Aust．（1）3：234，Figs 1－5．
Blaste（Lasiopsocus）michaelseni（Enderlein）． Roesler，1943．Stetim，ent，Ztg．104： 3.
Material Examined SOUTH AUSTRALTA． 2δ ， 3 nymphs，Pooginook Cons．Park，15．vi，1979，G．A． Holloway， 1 है， 2 km E Paxilla，23．vi．1979，G．A． Holloway． 4 ot， 5 只， 5 nymphs， 4 km E Pinnaroo， 14．v，1980，G．A，and J．Holloway， 2 0， 5 早，Pan－ dappa Res．， 20 km E Terowie，16．v．1979，G．A． Holloway．

L．michaelseni is one of the largest Australian psocids with a wing length of up to about 7 mm ． It was originally described from Western Australia． The record from New South Wales（Muogamarra Nature Reserve）（Smithers 1977）is in error and the specimen referred to there belongs to L ，simu－ latus Smithers．

Three of the females from Pandappa Reservc are brachypterous，the wings reaching only to the end of the abdomen．Endetlein（1907）gives wing lengths of $7.0 \mathrm{~mm}(\delta)$ and $4.7 \mathrm{~mm}(9)$ ．With the shorten－ ing of the wings venational aberration has occurred to the extent that the fusion of Rs and M in the fore wing is shortened so that these veins meet in a point or are even joined by a crossvein．A similar reduc－ tion in the length of fusion occurs of Cu_{10} and M to the point that these veins do not meet at all so the aerola postica is free and the discoidal cell open．

Lasiopsocus dicellus sp． n ，

Male

Coloration（in alcohol）：Head pale，but brown as follows：a double row of irregular confluent spots adjacent to each compound cye，across back of vertex and on ejther side of median epicranial suture； a broad spot on frons anterior to ocelli；a line in position of anterior arms of epicranial suture from ocelli to antenna base；a ting around antenna base； a mark below compound eyc on gena；postclypeal stripes and the labrum．Median postelypeal stripes closer and darker than lateral stripes．Ocellar tubcrcle black，Scape and pedicel brown；fagellum very

FIGS. 30-38. Lasiopsocus dicellus sp, 11. 30. 6 Fore wing. 31. 9 Fore wing. 32. Phallosome. 33. Hypandrium. 34. Subgenital plate. 35. Ninth tergite, postero ventral apophysis. 36. © Epiproct. 37. Gonapophyses. 38. of Ninth sternite.
dark brown. Eyes black. Firsl and second maxillary palp segments pale, third brown, fourth dark brown. Dorsum of mesolborax dark, shiny brown, a little paler where parapsidal sutures meet. Fore legs pale brown except for darker apex of tibia and tarsal segments. Meso- and meta-thoracic legs similar bat coxae dark brown, Fore wings (Fig, 30) byaline, without extensive pattern: pterostigma brown; veins dark brown. Hind wings hyaline; veins brown. Abdomen pale, terminal structures very dark brown.

Morphology: Length of body: 4 mm . Median epieranial suture distinct; anterior arms not evident but usual position indicated by brown line. Antennae fine, bearing long setae, those of first flagellar segment up to more than five times longer that width of segment. Eyes fairly large, not reaching level of vertex, IO/D: 1.9; PO: 0.83. Ocelli large. Apex of lacinia divided into two slightly denticulate lobes, the outer strongly divergent; lacinia narrawed just basad of apical division. Measurements of hind leg: F: $1.04 \mathrm{~mm} ; \mathrm{T}: 2.04 \mathrm{~mm} ; \mathrm{t}_{1} ; 0.60 \mathrm{~mm} ; \mathrm{t}_{2}=0.20$ $\mathrm{mm}_{\mathrm{m}} \mathrm{rt}: 3: 1$; et 22,2 . Fore wing length: 5.0 mm ; width: 1.6 mm . Pterostigma long, narrow, Stigmapophysis shratlow, dome-shaped. M before fusion with $\mathrm{Cu}_{\mathrm{ju}}$ curved to give a concave outer margin to discoidal cell; curved section of vein somewhat evanescent as are R_{2+3} and R_{4+5} beyond separation. IA fairly thick. An occasional tiny seta present on veins. Hind wing length: $3.7 \mathrm{~mm} \mathrm{~m}_{;}$width: 1.1 , Hind wing margin with a few fone, short setae between R_{2+3} and \mathbf{R}_{4+5} near wing apex. Epiproct (Fig. 36) sclecotized with a sinuous hind margin. A complex basal structure arises from epiproct where it is attached to ninth tergite. This consists of a posteriorly directed plate which lies above epiproct, the plate is posteriorly bilobed and strengthened along each side by a solerotized strip, the strips corving away somewhat from each other behind. From the base of the plate arise two erect elongate apically 3-lobed strap-like apopbyses (twisted in illustration) which are more heavily sclerotized dorsally than ventrally, Paraprocts with very strong, median sclerotized strengthening bar, a large, almost circular trichobothrial field distad of which the paraproct is extended into a medio-dorsally difected tapering bar subtended by a ventrally placed, lightly sclerotized lobe. These lobes are curved inwards and lio behind the distal part of the hypandrium. The eighth sternite sclerotized in distal part only, adjacent to base of bypandrium. Hypandrium (Fig, 36) distally upturned to end in a broad lobe with transverse posterior margin. Ninth tergite extended posteroventrally on each side into a distally broadened lobe with a heavily sclerotized margin. The broadened end is acute dorsally but broadly rounded ventrally (Fig. 35). Phallosome (Fig. 32)
with external parametes joined anteriorly, nartow, rodlike, diverging posteriorly, each with a pair of strongly developed, outwardly curved distal teeth. Near the end of each paramere arises a small projection, probably representing the semnants of the internal patameres.

Female

Coloration (in alcohol): As in male but with parapsidal sutures pale, legs darker and with distinct wing pattern in various shades of brown (Eig. 31), This is in strong contrast to the hyaline male fore wing,

Morphology: Length of body: 5.2 mm . Eyes small. 1O/D: 2.7, PO: 0.84. Lacinia as in male, Measorements of bind leg: $F=1.2 \mathrm{~mm} ; T=2.1 \mathrm{~mm} ; \mathrm{t}_{1}=0.5$ $\mathrm{mm} ; \mathrm{t}_{\mathrm{g}}=0.25 \mathrm{~mm} ; \mathrm{rt}: 2: 1$; ct: 21,2 . Fore wing length: 5.0 mm ; width: $1.6 \mathrm{~mm}, \mathrm{R}$ strangly developed. Rs and M fused for a short length. Discoidal cell as in male. Hind wing length: 3.8 mm ; width: 1.2 mm . Marginal setae as in male but a little more strongly developed. Paraproct broadbased. narrower posteriorly, well sclesatized with small circular trichobothrial ficld. Subgenital plate (Fig. 34). Gonapophyses (Fig: 37) with finely pointed ventral valve, dorsal valve blunt-ended, spiculate near end. Sclerification of ninth sternite (Fig, 38) simple, ring-like.
Material Examined: SOUTH AUSTRALIA. 1 d (holotype), 1 \& (allotype), Pandappa Res., 20 km. E. Terowie, 16.vi.1979. G. A. Holloway. Paratypes: 12 a, 6 梠, data as holotype, 2 d, $19,4 \mathrm{~km}$ NW Murray Bridge, 22.0.1981, G., J, and A. Holloway.

Holotype, allotype and paratypes in the Australian Museum.

Discussion: Laviopsocus dicellus differs from L. michatsent in heing much smaller and darker, with a fore wing length of only 5.0 mm compared with 7.0 mm for L. michaelseni. The wing setae are jeduced to an occasional small seta, not easily seen. The proportions of the complex structures associated with the male epiproct are different although the distinctive structures are similar in general form and arrangement. The phallosome differs in proportions of the parts. The eighth sternite of the male is sclerotized only jn a narrow band adjacent to the base of the hypandrium and the sternite is thus much less heavily and extensively sclerotized than in other genera of the Amphigerontiinae, to which subfamily Lasiopsocus belongs,

The female of L. michaelseni, as well as being much larger than that of L. Alcellus, does not have the extensive dark wing markings characteristic of L. dicellus.

Males of L. dicellus are very similar to those of L. simulatus Smithers but differ slightly in propor-

FIGS. 39-45, Blaste macrops sp. n. 39. © Fore wing. 40. Phallosome, 41, Hypandrium. 42. ㅇ Fore wing. 43. Subgenital plate. 44. if Epiproct. 45. Gonapophyses.
tions of the phallosome and the structures associated with the epiproct. The posterior lobe of the hypandrium has a transverse hind margin in L. dicellus: but is more rounded in L. simulatus. The female of L. simulatus is not known.

Rlaste macrops sp. n.

Male

Coloration (in alcohol): Head pale with brown markings as follows: a wide band consisting of irregular, sometimes conffuent spots adjacent to compound eyes, across vertex and on either side of median epicranial suture (these areas leave only a small part of epicranium clear) ; a broad band from sye through antenna base and across anterior part of postelypeus to meet band from other side; from the broad band, another runs from between eyc and antenna base towards the ocellar triangle, Postclypeus pale with rows of faint spots in positions usually occupied by postclypeal stripes; spots darker in anterior third. Labrum dark brown. Genae pale with dark mark below eye. Antennae brownt. Eyes black. Ocelli circled with black. Maxillary palps progressively darker from pale base to dark brown fourth segment. Meso-thoracic antedorsum dark brown except for a small spot on each anterolateral angle and one at junction of parapsidal furrows; dorsal lobes dark brown, broadly pale adjacent to parapsidal furrows and fore wing base; scutellum pale. Metathorax with pale antedorsum and brown dorsal lobes. Femora pale, irregularly marked with pale brown; tibiac pale proximally, becoming dark brown distally; tarsi dark brown. Fore wings (Fig. 39) hyaline, marked in shades of brown. Hind wings hyaline with a pale brown area in distal angle of Cu_{2}, Abdomen pale, with irregular brown, segmentally arranged matkings; terminal structures dark brown.

Morphology: Length of body: 2.8 mm . Median epicranjal suture distinct, anterior arms evanescent. Upper region of head somewhat expanded to form lobes on which the eycs are carried so that top of head is broadened; vertex medially depressed. Length of flagellar segments: $f_{1}: 0.85 \mathrm{~mm} ; \mathrm{f}_{2}: 0.90$ mm . Antennae slender with fine pubescence. Eyes fairly large, very prominent, carried on upper lateral head extensions, inner margins diverging strongly behind when seen Trom above. IO/D: 2.1 ; PO : 0.90 . Ocelli large, but ocellar tubercle not very prominent, Mcasurements of hind leg: F: 0.83 mm ; T: $1.9 \mathrm{~mm} ; \mathrm{t}_{1}: 0.6 \mathrm{~mm} ; \mathrm{t}_{2}: 0.15 \mathrm{~mm} ; \mathrm{tt}: 4: 1$, $\mathrm{ct}:$ 26, 4, Legs long and slender. Fore wing length: 4.5 mum; width: 1.7 mm . Sc curves distally to meet R . Rs and M fused for a length. Discoidal cell concave, i.c, M curved. M_{1} curves, arched towards wing margin, reaching margin just anterior to wing apex.

Hind wing length: 3.4 mm ; width: 1.1 mm . Microtrichia of wing membrane a little larger in cell Cu_{2} than clsewhere. Epiproct rectangular with rounded hind angles. Paraproct heavily sclerotized in basal half, lightly so in distal half; trichobothrial fiela latge and circular, posterior projection small and pointed. Hypandriam (Fig. 41). Phallosome (Fig. $40)$ with parameres apically separate and tapering, divergent,

Female

Coloration (in alcohol): As male but with a pale median line on mesothoracic antedorsum and more extensive fore wing markings (Fig, 42),

Morphology; Length of body: 3.7 mm . Head much larger than in male, shaped as in male, eyes unusually prominent for a female. Antennae fine. $10 / \mathrm{D}=2.5 ; \mathrm{PO}=0.82$. Measurements of hind leg: F: $0.82 \mathrm{~mm} ; T: 1.8 \mathrm{~mm} ; \mathrm{t}_{1} ; 0.55 \mathrm{~mm} ; \mathrm{t}_{2}: 0.15$ $\mathrm{mm} ; \mathrm{rt}=3.6: 1$. Fore wing length: 3.7 mm ; width: 1.3 mm . Venation as in male but M_{t} reaches wing margin at wing apex. Hind wing length: $2,8 \mathrm{~mm}$; width: 0.9 mm . Epiproct (Fig, 44) heavily sclerotized laterally, less so medially with hind margin slightly emarginate medially, Subgenital plate (Fig: 43) well sclerotized. Gonapophyses (Fig 45).

Material Examined: SOUTH AUSTRALIA. 1 a (holotype), 19 (allotype), 25 km E Peake, 23, vi. 1979, G, A. Holloway. Paratypes: 3 早, 1 \&, Germein Gorge, Flinders Ra., 11.5 km E Pt. Germein, $17 . \mathrm{vi}$. 1979, G. A. Holloway. 1 子, 2 km E Parilla, 23 vi. 1979, G. A. Holloway. 1 d, Pandappa Res., 20 km E Tcrowie, 6. $\sqrt{1} .1979$, G. A. Holloway.

Holotype, allotype and paratypes in the Australian Museum.

Discussion: Blaste macrops belongs to a group of species in which the male hypandrium is rounded, with a pair of lateral, incurved, posteriorly projecting processes and a phallosome in which both inner and outer parameres are elongate, joined anteriorly, with the inner parameres free behind, tapering towards end. The eyes in both sexes are prominenily placed on short dorsolateral extensions of the head capsulc and there is usually sexual dimorphism in wing pattern with females having somewhat more extensive and often darker markings than males. The group includes B. fulcifer Smithers (Tasmania), B. Jurcilla New (Western Australia), B, Iunulata New (Western Australia) and B. tillyardi Smithers (New Zealand, New South Wales and South Australia) - R. panops Smithers (Tasmania) may also be considered as belonging to this group although wing pattera dimorphism is not pronounced and the
male hypandrium lacks the curved processes; the phallosome, however, is very similar to that of B. falcifer, as is the shape of the epiproct.

Only the most obvious differences between the species are given here. Perusal of the descriptions and illustrations will provide an indication of the characteristic differences in proportions and shapes of genitalic structures as well as wing pattern differences by which the species can be distinguished.

Both B. falcifer and B. panops have a distinct mark between the ends of R_{1+5} and M, i.e. near the wing apex which is lacking in B. macrops. In B. lunulata males (females not known) there are extensive wing markings in cell Cu_{2}; the band of colour across the wing from pterostigma to areola postica is broad and continuous; $M, R s+M$ and the edges of the discoidal cell are bordered with brown and the median cells and cell R_{5} each apically have

FIGS, 46-50, Blaste magnifica $\mathrm{sp}, \mathrm{n}, 46$, of Fore wing. 47. Hypandrium. 48. © Epiproct, 49. ס Paraproct, 50. Phallosome.
extensive brown markings. These markings are far more exlensive than in \mathcal{B}. macrops (Fig. 39).. In B. tillyardi, probably the nearest known relative to B. macrops, the hypandrial processes are shorter and stouter and the imer parameres posteriorly incurved. In female B. macrops there are irregular marks in cell R adjacent to M which ate absent from female B. tillyardi and B. furcilla. Males of B. furcilla differ from males of B. macrops in having a triangular flap arising from the base of the epiproct (Now 1974, Fig. 17).

The gencric limits of Blaste and its nearest relatives are in need of revision on a world basis and when this is done it seems likely that B. macrops and similar species will be defined as a distinct gencric group.

Blaste magnifica sp, n.

Male

Coloration (in alcohol): Head brown with dark brown markings. A double row of irregulat, conIluent spots adjacent to compound eyes, across back of vertex and adjacent to median epicranial suture. Frons with triangular patch with pale centre anterior to ocellar tubercle. Epistomial suture very dark brown. Areas of top of head not occupied by the spotting described above are mostly occupied by brown which does not quite reach the spots, A very dark band runs from compound eye to antenna base. Genae with an irregulat mark below compound eye and two small marks above base of mandible. Postelypeal stripes dark and clearly defined. Anteclypeus dark in basal half, pale in distal half. Labrum pale brown with dark brown proximal border. Scape, pedicel pale brown and basal half of first flagellar segment pale brown, remainder of flagellum brown. Eyes black. Ocellar tubercle black. Maxillary palp with third and fourth segments dark brown, otherwise pale. Thorax distinctively marked, being very dark chocolate brown with only parapsidal furrows and a narrow median line between dorsal lobes pale, the line between the dorsal lobes extending for a short distance onto hind part of antedorsum. Pleuta nostly dark brown, Femora irregularly marked in various shades of brown, darkest at distal end. Tibiae brown, darker at each end Tarsi brown. Fore wings (Fig. 46) hyalinc, densely speckled brown. Hind wings hyaIine, faintly tinged with grey. Abdomen pale with a few brown marks; terminal structures dark brown,

Morphology: Length of body: 3.8 mm . Upper angles of head produced a little so that the eyes are very prominently held on short, thick "stalks". Median epicranial suture very distinct, anterior arms absent, Vertex slightly lower in middle than laterally, thus accentuating eye prominence. Postclypeus almast squate when viewed lram front of head; not
very prominent. Lengths of flagellar segments: f_{1} : $1,16 \mathrm{~mm} ; \mathrm{f}_{2}: 1,04 \mathrm{~mm}$. Antennae very fine, with long setae, some as long as seven times Blagellar diameter. Eyes large, prominent on cephalic extensions, upper margins high above level of vertex. $\mathrm{JO} / \mathrm{D}: 1.4 ; \mathrm{PO}: 0.94$. Ocelli large on prominent tubercle; epicranial plates concave on either side of ocellar tubercle, thus accentuating tubercle prominence. Measurements of hind leg: $F: 1.12 \mathrm{mim}$; $T=2.64 \mathrm{~mm} ; \mathrm{t}_{1}: 0.68 \mathrm{~mm} ; \mathrm{t}_{2} ; 0.14 \mathrm{~mm} ; \mathrm{tt}: 5 . \mathrm{l}$; ct: 29, 2. Legs Jong; thin, with very spiny tibiae, Femora narrow, parallel sided. Fore wing length: 6.5 mm ; width: 2.1 mm . Se meets R distally, Rs and M fused for a length. Discoidal cell incurved on distal margin. $\mathrm{Cu}_{1 a}$ and M fused for a length; basal and second sections of $\mathrm{Cu}_{1 n}$ at a slight angle to one another. Hind wing length; 4.8 mm ; width: 1.6 mm . Rs and M fused for a short Iength. Margin glabrous. Epiproct (Fig, 48), Paraproct (Fig. 49). Hypandrium (Fig. 47). Phallosome (Fig. 50).

Female

Unknown.

Material Examined: SOUTH AUSTRALIA, ठ̋ (holotype), Pooginook Park, 15.vi.1979, G. A. Holloway. Paratype: δ, as holotype.

Holotype and paratype in the Australian Museute. Blaste magnifica is a very distinctive, large and easily recognized spocies, It is the onty species in the genus in which the wing is mottled with an overall pattern of small, irregularly contluent spots. The hypandrium is distinctive, with an unusual hind border which is medially sclerotized and carries two small projections, one on each side of the midine. The phallosome is also of unusual form for the genus. As in the case of the group of species associated with B, macrops, mentioned above, it muy be necessary to recognize this species in a separate genus. when the large genus Blaste is revised.

Blaste angusta sp. n.

Male

Coloration (in alcohol): Head pale brownish with dark brown, jrregulat, confluent spots adjacent to compound eyes, actoss vertex and adjacent to median epicranial suture: A narrow brown band sursounds antenna base. Postclypeal striations dark brown. A brown ovoid patch with pale centre lies anterior to ocellar triangle just posterior to epistomial suture. Genae pale with two small spots below eye. Antennae brown, a little paler in basal four segments than more distally. Maxillary palps pale basally, fourth segment very dark brown. Mesothoracic antedorsum dark brown; parapsidal furrows broadly pale; scutellum pale; a posterior lateral pale line on each dorsal lobe. Femora pale brown, dark

FIGS, 51-55, Blaste angusta sp. n, 51. © Fore wing. 52. Hypandium. 53. Phallosome. 54. ठt Paraproct. 55. Epiproct and ninth tergite.
along dorsal and lateral surfaces. Tibiae pale brown, a little darker at each end. Tarsi dark brown. Fore wing (Fig. 51) hyaline with markings in various shades of brown. Hind wings hyaline, a brown spot at wing base. Abdomen pale with slighty darker, irregular, segmentally arranged markings in basal two thirds; distal third occupied by the almost black, extensively sclerotized terminal structures; eighth sternite extensively and very heavily sclerotized.

Morphology: Length of body: 3.0 mm . Median epicranial suture very distinct but anterior arms absent. Median part of epistomial suture sinuous. Length of flagellar segments: $f_{1}: 0.80 \mathrm{~mm} ; \mathrm{f}_{2}: 0.64$ mm . Flagellar setae about three times as long as flagellar width. Eyes large, inner margins divergent behind when seen from above and just reaching level of vertex. IO/D: 1.9; PO: 1.0. Measurements of hind leg; $F: 0.80 \mathrm{~mm} ; T: 1.80 \mathrm{~mm} ; \mathrm{t}_{\mathrm{I}}: 0.56 \mathrm{~mm}$; $\mathrm{t}_{\mathrm{g}}: 0.20 \mathrm{~mm} ; \mathrm{rt}: 2.8 ; 1 ; \mathrm{ct}: 27$, 1. Fore wing length;
4.0 mm ; width: 1.4 mm . Fore wing (Fig. 51) with broad pterostigma, with round hind angle and R_{1} curved to give a concave pterostigma basad of hind angle. Rs and M fused for a very short length. Sc ends free in costal cell, runs very close to R. Third median cell very narrow, M_{3} and distal sections of $\mathrm{Cu}_{1 \text { n }}$ almost parallel but relationship varies somewhat in the four fore wings available for study. Apex of areola postica fairly broad, Hind wing Jength: 3.0 mm ; width; $1.1 \mathrm{~mm} . \mathrm{Rs}$ and M fused for a fairly long length. Ninth tergite (Fig. 55) very heavily sclerotized, extended posteriorly in the middle to which extension is attached the small lobed epiproct. Paraproct (Fig. 54). Eighth sternite very heavily sclerotized. Hypandrium (Fig. 52). Phallosome (Fig. 53).

Female

Unknown.

Material Examined：South Australia if（holotype）， 10 km SW Renmark，15．vi．1979，G．A．Holloway． Paratypes： 1 d，as holotype， 1 古．Telowic Corge， 10 km SE PL，Germoin，20．v．1981，G，and J，Hollo－ way． 1 d ，W end of Horrock＇s Pass，19．v．198I，G． and J．Holloway，

Holotype and paratypes in the Australian Muscum．

Diseussion：Blaste angusta is an easily recognized species．It is so far the only known Austratian species of Blaste in which cell M_{3} in the fore wing is narrow as well as being well pigmented．The parameres，distally broadened into a rough knob，are characteristic．

Ptycta umbrata New

Ptycta umbrata New，1974．1．Aust．ent．Soc．13： 297，Figs．38－44．

Material Examined：SOUTH AUSTRALIA． $2 \sigma_{3}$ 1 f． 2 km W Williamstown，8，v，1980，G．and J． Holloway． $3 \mathrm{~d}, 11 \mathrm{n}_{*}$ ，Wilmington，Flinders Range， 6．v．1980，G．and J．Holloway． 1 क，Alligator Gorge Rd．，near Mt．Remarkable，Flinders Range，17．vi． 1979，G．Holloway． 1 ㅎ， 6 km W Kapunda，I8．vi． 1979，G．Holloway， 1 年， 25 km E Peake，23．vi，1979， G．Holloway． 3 \＆, 1 ，Telawie Gorge, 10 km SE Pt．Germein，20，vi $1981, \mathbf{G}_{i}, \mathbf{J}$ ，and A．Holloway． 3 9．Germein Gorge，19，v．1981，G．and J．Holloway．

This species has previously been recorded only from Victoria．

Ptycta glossoptera New

Ptycta glossaptera New，1974．J．Aust．ent．Soc． 13：302，Figs，58－64．
Material Examined：SOUI＇H AUSTRALIA． 6 d． 24 n ，Pandappa Res．， 20 km E Terowie， 16 vi． 1979，G．A．Holloway． 1 \＆（macropterous）， 2 오 （brachypterous）， $1 \mathrm{n}, 2 \mathrm{~km}$ E Parilla，23．vi．1979， G．A．Holloway． 1 q（brachypterous）， $1 \mathrm{n}, 10 \mathrm{~km}$ SW Renmark， $15 . v i, 1979$ ，G．A．Holloway． 1 ©， Pooginook Park， $15 . v i .1979$ ，G．A．Holloway．

This species has previously been recorded from Victoria，

Ptycta longipennis sp． n ．

Male

Coloration（in alcohol）：Head greyish with brown markings．A double row of spots adjacent to com－ pound eyes，across back of head and adjacent to median epicranial suture，a mark along anterior arms of siture which broadens toward lateral ends；an avoid spot anterior to ocellar tubercle．Base of antenna surrounded by a narrow brown band．Post－ clypeal stripes narrow．Antenna dark brown．Maxil－ lary palps pale，fourth segment very dark brown，
almost black，Mesonotum dark brown，sutures， median antedorsal stripe and posterolateral edges of lateral lobes pale．Legs pale，tarsi brown．Fore wing （Fig．56）hyaline，with a faint general tinge of brown and slightly darker brown areas as in figure Abdomen pale，irregularly marked with brown； ferminal structures dark brown．

Morphology：Length of body： 2.3 mm ．Median epicranial suture distinct；anterior arms evanescent but position marked by dark stripe Lengths of flageliar segments： $\mathrm{f}_{1}: 0.76 \mathrm{~mm}$ ； $\mathrm{f}_{2}: 0.74 \mathrm{~mm}$ ．Eyes large，reaching above level of vertex，IO／D：1．3： $\mathrm{PO}: 0.91$ ．Measurements of hind leg： $\mathrm{F} ; 0,68 \mathrm{~mm}$ ； $T: 1.60 \mathrm{~mm} ; \mathrm{t}_{1}: 0.50 \mathrm{~mm} ; \mathrm{t}_{2}: 0.12 \mathrm{~mm} ; \mathrm{rt}: 4.2 ; 1$ ； ct： 30,3 ，Fore wing length； 4.0 mm ；width： 1.3 mm ． Fore wings relatively long and narrow．Se ending free in costal cell．Pterostigma fairly narrow but hind angle clearly evident．Rs and M fused for a short length．Discoidal cell broad，distal section of M and Ca_{1} bardering cell both curved distally towards wing apex，Basal section of $\mathrm{Cu}_{1 n}$ slightly sinuous almost in a line with second section．Hind wing length： 3.2 mm ；width： 0.9 mm ．Rs and M fused for a long length．A few marginal setac between R_{2+3} and R_{4+5} ．Epiproct（Fig．59）lightly sclerotized， bordered with slightly more heavily sclerotized band of variable width．The posterior median part is folded back in figure．Hypandrium（Fig，58）slightly asymmetrical with a lateral，selerotized extension of the dorsally curved，median，straplike band neat the distal end．Phallosome（Fig．57）with a long pos－ terior median extension．

Female

Coloration（in alcohol）：As in male．Wings（Fig． 60）slightly darker．

Morphology：Length of body： 2.6 mm ，Lengths of flagellar segments：$f_{1}=0.60 \mathrm{~mm} ; \mathrm{f}_{2}: 0.60 \mathrm{~mm}$ ． Eyes smaller than in male，not quite reaching level of vertex． $\mathrm{IO} / \mathrm{D}: 1.7 ; \mathrm{PO}: 0.82$ ，Measurements of hind leg：$F_{:} 0.56 \mathrm{~mm} ; T: 1.36 \mathrm{~mm} ; \mathrm{L}_{1}: 0.40 \mathrm{~mm} ; \mathrm{t}_{2}$ ： $0.13 \mathrm{~mm}_{;} \mathrm{rt}: 3: 1 ; \mathrm{ct}: 25$ ，1，Fore wing length： 3.6 mm ；width： 1.0 mm ．Venation（Fig．60） as in male．Hind wing length： 2.7 mm ；widthe 0.8 mm．Epiproct（Fig．61）．Subgenital plate（Fig，64）． Gonapophyses（Fig，62）with short ventral valve； dorsal valve tapering to point，distally slightly eurved upwards；spieulate in distal third．Sclerite of ninth sternite（Fig．63）simple，lightly sclerotized，
Material Examined：SOUTH AUSTRALIA，© （holotype），\＆（allotype）．Germein Gorge，19．v． 1981，G．and J．Holloway．Paratypes： 1 of， 1 早， Telowic Gorge， 10 km SE Pt．Germein，20．v．1981， G．and J．Holloway．Holotype，allofype and paratype in the Austratian Maseunn．

FIGS. 56-64, Ptycta longipennis sp, n. 56. δ^{*} Fore wing. 57. Phallosome, 58. Hypandrium. 59. of Epiproct 60, 9 Fore wing. 61. ํ. Epiproct. 62. Gonapophyses, 63. 7 Ninth sternite, 64. Subgenital plate.

Discussion: Ptycta longipennis is very similar to P. muogamarra Smithers, from New South Wales. It is, however, larger and there are distinct differences in several anatomical features. In the male the distal median extension of the phallosome is longer and the median strap-like upcurved part of the hypandrium is more nearly symmetrical. In the female the external valve of P, longipennis is broader and,
although reduced in a similar way, the ventral valve is more robust. In P. glossoptera the hypandrium is strongly asymmetrical and in the other Austrahan species the hypandrium bears a variety of spines and projections.

Females of P. emarginata $\mathrm{New}_{3} P$, glossoptera New, P, improcera New, P. picta New and P. umbrata all have some darker brownish marks on the fore

FIGS. 65-69. Ptycta hollowayae sp. n. 65. 오 Fore wing. 66. ㅇ Epiproct, 67. Subgenital plate. 68, 오 Ninth sternite, 69. Gonapophyses.
wings. The female of P. cornigera is not known but the male does not have obvious dark marks. P. longipennis differs from P. hollowayae sp . n . (described below) in lacking the rugose areas along the distal border of the epiproct and in not having an apical thickening to the posterior median process of the phallosome; phallosome shape also differs in that the phallic frame is much narrower in P. hollowayae and has an anteriorly projecting apophysis on each side at the posterior third of the frame. The fore wing of the female of P. hollowayae has an interrupted, irregular brown band from stigmapophysis to nodulus. In P. hollowayae the dorsal valve of the gonapophyses is broad and the ventral valve not shortened to the extent that it is in P. longipennis.

Ptycta hollowayae sp. n.

Female

Coloration (in alcohol): Head and appendages very similar to Ptycta emarginata New but with postclypeal striae not obsolete in midline and frons with a small dark circle in midline anterior to ocelli. Thoracic lobes dark brown but each broadly bordered with pale areas. Fore wings (Fig. 65) hyaline with very faint overall brown tinge and marked in shades of brown. Hind wings hyaline with very faint suggestion of brownish area behind end of Cu_{2}.

Morphology: Length of body: 3.8 mm . Median epicranial suture distinct, anterior arms absent. Head broad across vertex, eyes large, just reaching level

FIGS. 70-73. Ptycta hollowayae sp. n. 70. § Fore wing. 71. ठ Epiproct. 72. ठ Paraproct. 73. Phallosome.
of verlex．IO／D：1．8；PO：I．0．Ocelli large，anterior ocellus only little smaller than lateral oeetli．Length of flagellar segments：$f_{1}: 0.96 \mathrm{~mm} ; \mathrm{f}_{2}: 0.76 \mathrm{~mm}$ ． Measurements of hind leg：$F: 0.92 \mathrm{~mm} ; \mathrm{T}: 2.0$ mm ； $\mathrm{t}_{1}: 0.56 \mathrm{~mm}$ ；t2： 0.20 mm ；rt： $2.8: 1$ ；ct： 22 ， 4．Front fomora noticeably broader than femord of middle and hind legs．Fore wing length： 4.4 mm ； width： 1.4 mm ．Fore wing with Rs and M meeting in a point，joined by a crossyeiry or fused for a very short length．Pterostigmal spurvein minute，hardly discernible，Fore wing glabrous．Hind wing length： 3.3 mm ；width： 1.1 mm ．About ten marginal setae between R_{2+3} and $\mathrm{R}_{4 \div 5 \text { ．Epiproct（ } F i g, 66 \text { ）．}}$ ． Gonapophyses（Fig，69）．Dorsal valve broad with faitly long apical，pointed extension．External valye with distinct lobe lying adjacent to dorsal margin of dorsal valve，Subgental plate（Fig．67）with short． truncate，posterior lube on the upper side of which near the posterior margin is a small，irregularly shaped thickening of the internal mombrane，Y－shaped pig－ monted area with short，broad，＂stem＂，the ends of the＂arms＂broad but somewhat apically divided． Sclerification of ainth sternite（Fig．68）in form of an owoid，very heavily sclerotized plate．

Male

Coloration（in alcohol）：Head and appendages as in female but head markings reduced in accor－ dance with greater cye size．Fore wings（Fig．70）． Hind wings hydine．

Morplology：Length of flagellar segments：f_{1} ： $1.04 \mathrm{~mm} ; \mathrm{f}_{2} ; 0.84 \mathrm{~mm}$ ．Antennae thicker than in lemale，finely pubescent． $10 / \mathrm{D}: 1.1 ; \mathrm{PO}: 1.0$ ，Eyes mach larger than in female，reaching well above level of vertex with inner margins diverging pos－ teriorly when viewed from above；emarginate posterionly－medially above．Mcasurements of hind leg：F： $7.0 \mathrm{~mm} ;$ T： $2.24 \mathrm{~mm} ; \mathrm{t}_{1}: 0.60 \mathrm{~mm} ; \mathrm{t}^{2}$ ； $0.18 \mathrm{~mm} ; \mathrm{rt}: 3.3: 1 ; \mathrm{ct}: 27,4$ ．Fore wing length： 5.0 mm ；width： 1.7 mm ：Pterostigmal spurvein absent．Rs and M joined by a very short crossvein， in length only a litle greater than vein thickness． Hint wing length： 3.7 mm ；width： $1,3 \mathrm{~mm}$ ．A few fine setae on margin between $\mathrm{R}_{2 \div 3}$ and $\mathrm{R}_{4} \mathrm{~m}$ ． Epiproct（Fig．71）lightly sclerotized with broad， thickened，marginal band of varying widtlf；hind margin transverse；a hasal，upstanding，broad－ margined lobe partly overhies minth tergite，the lobe medially slightly emarginate，Paraproct（Fig．72）． Hypandrium similar to that of Plycta glossontera （New 1974，Fig．62）．Phallosome（Fig，73）．

Material Examined：SOUTH AUSTRALIA，呆 （holotype），\＆（allotype）， 15 km W Tailem Bend， 13．v．1980，G．and J．Holloway．Paratypes： 1 a，as holotype． 1 ？ 18 km N Ardrossan， $8, v, 1980, \mathrm{G}$ ．and

J．Holloway． 1 9，I km E Edithburgh，7．v．1980，G． and I．Holloway．

Holotype，allotype and paratypes in the Aus－ tralian Museum．

Discussion：Piycta hollowayae resembles P ．emar－ ginara New（ q only known）and P．glossoptera New （hoth sexes knowit），It differs from both in being子arger and the female has more extensive wing markings．The male of P ．hollowayae differs from that of P ．glessoptera in the form of the paraprocts and in proportions of the phallosome（although general shape is similar）．The lateral projections are more pronounced in P ．hollowayae．The epiproct and the hypandrium are similar in the two species．The anterior lobe of the epiproct appears to be folded back in the illustration given by New（1974，Fig 64）．In P ，cornigera，P ，improcera and P ．umbrata the hyandrium bears spines and various processes which are not present in P ．hollowayae．From P ． mueganarra P ．hollowayae differs in the form of proportions of the pballosome and in not having the ventral valve of the gonsapophyses reduced．Com－ parison with P ．longipenhis has been made above．

Tanystigma tardipes（Edwards）

Clematostigma tardipes Edwards，1950．Pap．R．Soc． Tasm．1949：95，Figs．1－17．
Copostigma（Clematostigna）tardipes（Edwards）． Smithers，1967．Aust，Zool， 14 （1）： 103.
Tanystigna tardipes（Edwards）．Smithers，in press． Ausi．ent．Mag．
Material Examined：SOUTH AUSTRALIA． 1 A， 1 ㅇ， 12 km SE Port Wakefield，8．v． $1980, \mathrm{G}$ ．and J． Holloway．I $\delta, 3$ 里， $1 \mathrm{n}, 4 \mathrm{~km} \mathrm{~S}$ Moonta，7，v， 1980, G．and J．Holloway， 1 d，Port Elliot，13．v．1980，G． and J．Holloway 2 古，Wilmington，Flinders Ranges， $6 . v .1980, G$ and J．Holloway， 1 है， $27,78 \mathrm{~km} \mathrm{~N}$ Ardrossan，8．v．1980，G．and I．Holloway． 2 3． 2 ？ 23 km E Tailem Bend，13．v．1980，G．and J．Hollo－ way． 1 a， 1 ㄷ，Telowie Gorge， 10 km E Pt．Ger－ mein．20．v，1981，G．and J．Holloway， 4 \＆， 5 ， Farina，17．v．1981，G．and J．Holloway．
T ．tardipes was described from Tasmania and has been recorded from Victoria．

Tanystigma elongata sp．n．

Male
Coloration（in alcohol）：Head pale grey－brown with dark brown matkings：A dauble row of con－ fluent spots adjacent to median epicranial suture， across back of vertex and adjacent to compound eyes；a spot between ocellar tubercle and epistomial suture；an irregular ring around antenna base；dis－ finct postclypeal striations．Epicratial suture dark brown Labrum pale brown．Genac grey－brown． Amtennac dark brown．Eyes purplish．Ocellar

FIGS. 7478, Tanystigome comgata sp, 13. 74. of Fore wing, 75. Phallosome. 76, Hypandrium 77. \& Paraproct. 78, \& Epiproct,
tuberele dark brown. First and second maxillary palp segments very pale brown, third and fourth segments dark brown. Mesothoracie notum dark brown except for pale brown parapsidal sutures and posterior borders of dorsal lobes. Femora brown with darker apical band; tibiae pale brown, darker at each end; tarsi dark brown. Fore wings hyaline with brown pattern (Fig. 74). Hind wings hyaline, veins brown. Abdomen pale with irregular lateral segmentally arranged naarks; terminal structures very dark brown.

Morphology: Length of body: 3.1 mm . Median epicranial suture distinct, anterior arms not evident. Epistomiat suture sinuous, curved forwards in middle, anterior to anteocellar spot. Length of flagellar segments: $\mathrm{f}_{1}: 0.90 \mathrm{~mm} ; \mathrm{f}_{2}: 0.84 \mathrm{~mm}$. Antennae fine, flagellar setae up to three times as long as flagellar diameter. Eyes large, reaching a little above level of vertex. IO/D: 1.2; PO: 1.0 , Eyes slightly emarginate opposite antenna base, Measurements of hind leg; F: 0.76 mm ; T: 1.80
$\mathrm{mm} ; \mathrm{t}_{\mathrm{t}}: 0.46 \mathrm{~mm} ; \mathrm{t}_{3}: 0.20 \mathrm{~mm} ;$ st: 2.3:1; ct: 21, 4. Tarsal segments Iong, ctendia large. Fore wing length: 4.9 mm ; width: 1.6 mm . Fore wing. Fore wing (Fig. 74) with Sc ending in R. R_{1} almost straight basad of hind angle of pterostigma; R_{1} almost straight between hind angle and wing margin. Pterostigmal spurvein obvious. Rs and M fused for a short length. Veins somewhat evanescent at forking of Rs , second half of Cu_{1}, basal section of $\mathrm{Cu}_{1 \mathrm{n}}$ and the third quarter of outer margin of discoidal cell. Cu_{10} and M fused for a very short Iengtl. Hind margin of wing near base thin, rugose. A few small, fine setae on wing margin from proximal end of pterostigma to wing apex, Hind wing length: 4.0 mm ; width: 1.2 mm . Hind wing with Rs and M rused for a length. A few small marginal setae between R_{2+3} and wing apex. Epiproct (Fig, 78) well sclerotized, less so laterally, with a pair of small, crect basal lobes. Paraprocts (Fig. 77) with large field of Lrichobothria and a tightly sclerotized, setose dome between trichobothria and the apical spur, Apical spur broad-based with sharply pointed,

FIGS. 79-84, Tanystigma clongata sp. n. 79. q Fore wing. 80. 오 Hind wing. 81. Subgenital plate. 82. 우 Ninth sternite. 83. 운 Epiproct. 84, Gonapophyses.
curved apex- Posterior margin of hinth tergite strongly sclerotized in middle section, the seleratization tapering daterally. Hypandrium (Fig. 76) very heavily sclerolized with two inwardly curved, posterior projections which are laterally setrate between the bases of which the hind margin of the hypandrium is medially emarginate and bears a small median, rounded ventral selerite. Phailosome (Fig 75. tilted in preparation) consisting of two elongate, natrow busally fused, distally divergene external parameres each with pointed, apical sclerite.

Fenale

Coloration (in alcohol): Body cotoration as in male but witly a median pale brown line on antedorsum of mesothorax and abdomen distinetly banded with browh. Antennae as in male but scape, pedicel and first two Magellar segments very pale. Third maxillary palp segment pale in distad hatf. Labrum pale, darker medially. Legs as in male, Fore wings (Fig. 79) hyaline with pattern more extensive than in male. Hind wings (Fig. 80) with some vary pale brown colour.

Morphologyt Length of body: 35 mm . Length of Hagellar segments: $f_{1}=0.80 \mathrm{~mm}: f_{1}: 0.50 \mathrm{~mm}$. Antennac fine, flagellar setae about as long as flagellar diameter, that is, setac ate relatively much shorter than in male. Eyes much smaller than in twale not reaching level of vertex. $10 / \mathrm{D}: 2.2 ; \mathrm{PO}$: (0.8. Anterior ocellus much smaller than lateral ocelli. Epistomial suture sinuous anterior to ocellar tubercle. Measurements of hind leg: F: 0.72 mm ; $T: 1.56 \mathrm{~mm} ; \mathrm{t}_{1}: 0.38 \mathrm{~mm} ; \mathrm{t}_{2}: 0.20 \mathrm{~mm} ; \mathrm{rt}: 1.9: 1$; ct: 19, 0. Ctenidia small. Fore wing length: 4.1 mm ; width: 1.4 mm . Fore wing (Fig. 79) similar to that of male but pterostigma a little broader, with margin both basad and distal of hind angle very slightly sinuous. Spurvein abvious. Areola postica joined to media by a short crossvein. Marginal setite as in miales, between base of pterostigma and wing apex. Epiproct (Fig. 83). Subgenital plate (Fig. 81) with long, rounded posterior lobe with hroad, irregular median band without pigment. Gonapophyses (Fig, 84), Sclerifications of ninth sternite (Fig, 82),

Material Examined: SOUTH AUSTRALTA. \& (holotype), 古 (allotype), 20 km SE Port Augusta, Horrock's Pass, 17.vi. 1979, G. A. Holloway. Paratypes: 1 冬, Mt. Ohlssen Bragge, Wilpens Pound, 18.v. 1981 , G. and J. Holloway, 4 B, Germein Gorge, 20.v. $1981, G$, and J. Holloway;

Holotype, allotype and paratypes in the Australian Musetim.

Discussion: Tanywigha elongata is the only species of the genus in which there are extensive wing
markings in cells $\mathrm{R}_{1}, \mathrm{R}_{\mathrm{i}}$ and $\mathrm{R}_{\pi}, \mathrm{Cu}_{7}, \mathrm{Ca}$, and the discoidal cell. It is casily recognized on this featurc.

Tatystigma bifurcata seg. n.

Female

Coloration (in alcohol): Head pale buff with dark brown spotling on either side of median epicranial suture, across back of vertex and adjacent to compound eyes. Area between epistomial suture and ocellar tuhercle with ovoid boown mark encolosing a pale central spot. Postelypeus pale buft with fine parallel brown lines, very distinct, running forward form epistornial suture but not reaching anteclypeus, Labrum dark brown with median. anterior, semicircular pale area. Genae pale, not marked. Scape, pedicel and basal part of first flagellar segment brown, rest of antenna dark, almost black, Eyes black. Ocelli on very dark brown tuberele, First and second maxillary palp segments pale; third segment dark int basal half, dark distally; fourth segment dark brown. Mesothoracic nolum dark brown witio a median pale stripe; dorsal lobes with a small pale area near postcro-lateral corner, Metanotum similar to mesonotum. Pleura dark brown with some paler areas. Coxae dark brown. Femora pale with some irregular brown marks and stight suggestion of preapical dark band. Tibiac pale brown. Tarsi brown. Fore wings (Fig. 85) hyaline with brown markings. Hind wings hyaline, with faint brownish patch behind distal end of Cu_{2}.

Morphology: Length of body: 3.5 mm . Head with well rounded vertex. Median epicranial suture very dislinet. Postclypeus fairly bulbous. Lengths of flagellar segments: $f_{1}: 0.64 \mathrm{~mm} ; f_{2}: 0.52 \mathrm{~mm}$. Eyes fairly large. $\mathrm{IO} / \mathrm{D} ; 1,1 ; \mathrm{PO} ; 0,80$. Lateral ocelli very large, anterior ocellus small. Measurements of lind leg: $F: 0.66 \mathrm{~mm}, \mathrm{~T}: 1.44 \mathrm{~mm} ; \mathrm{t}_{1}: 0.36 \mathrm{~mm}$; $\mathrm{t}_{\mathrm{a}}: 0.16 \mathrm{~mm} ; \mathrm{rt} .2 .3 \mathrm{~s}$; ct: 18, 1. Fare wing length: 4.1 mim ; width: 1.40 mm . Subcosta well developed basally, straight, becoming evanescent in costal cell. Stignopophysis well developed, dome shaped. R_{1} beyond sligmapophysis fine, i.e, hind margin of pterostigma fine, Spurvein very small. Postpterostigmal mark indistinet as it is of same colour as pigntented area but can be recognized by difference in texture from base to hind angle of pterostigma. Rs and M lused for a length. Rs and branches of Rs evanescent near bifureation, M between Rs and Cu_{10} strongly curved to give a concave outer margin to discoidal cell. Hind wing length: 3.2 mm , width: 1.0 mm . Sc evanescent in costal cell, Rs. and M lused for a length. Wing margin between $\mathrm{R}_{2 \div 3}$ and $\mathrm{R}_{4+\infty}$ with twelve well developed but short setae. Epiproct (Fig. 86). Paraproct (Fig. 89). Subgenital plate (Fig. 87). Gonapoplyyses (Fig. 90). Sclerifications of ninth sternite (Fig. 88).

FIGS, 85-90. Tanystigma bifurcata sp, n. 85. \& Fore wing. 86. q Epiproct. 87. Subgenital plate. 88. 9 Ninth sternite. 89. q Paraproct. 90. Gonapophyses.

FIGS，91－94，Tanystigina bijurcata sp，n．91．of Fore wing．92，Phallosome．93．© Epiproct，94．Hypandrium．

Male

Coloration（in alcohol）：Body coloration as femate．Fore wings（Fig．91）hyaline．Hind wings hyaline without brownish area behind Cu_{2} ．

Morphology：Postclypeus not as bulbous as in lemale，Length of flagellar segments： $\mathfrak{f}_{1}: 0.80 \mathrm{~mm}$ ； L．； 0.64 mm ．Eyes very large，reaching just above Ievel of vertex， $10 / \mathrm{D}: 1.0 ; \mathrm{PO}: 0.94$ ．Ocellar tubercle very well developed．Measurements of hind teg：F ： $0.72 \mathrm{~mm} ; T: 1.72 \mathrm{~nm} ; \mathrm{t}_{1}: 0.44 \mathrm{~mm} ; \mathrm{t}_{-}: 0.18 \mathrm{~mm} ; \mathrm{Tt}$ ： $2.4: 1$ ；ct： 18,4 ．Legs long and thin．Fore wing length： 4.2 mm ；width： 1.5 mm ．Fore wing with indistinct pterostigmal spurvein but postpterostigmal mark well developed．M distad of separation from Rs strongly curved to give concave discoidal cell．Hind wing length； 3.1 mm ；width： 1.1 mm ．A few fine marginal setae between \mathbb{R}_{2+3} and R_{4+5} ．Epiproct （Fig，93），Hind margin of ninth tergite well sclero－ tized with two small projections against which the epiproct articulates．Latero－ventral matgin of minth tergite on each side ends in a rounded apophysis， Hypandrium（Fie，94）．Phallosome（Fig．92），

Material Examined：SOUTH AUSTRALIA．©（holo－ type），${ }^{\circ}$（allotype）， 18 km S Port Pirie， $7 . \mathrm{v} .1980$ ， G．and I．Holloway．Paratypes： 7 是， 7 d，as holotype． 1 S， 1 里， 15 km N Port Broughton，7．v．1980，G． and J．Holloway， $17,4 \mathrm{~km}$ E Pinnaroo，14 v，1980， G．and J．Holloway， 1 足，Alligator Gorge Rd．，near Mt．Remarkable，Flinders Range，17．vi．1979，G．A．

Holloway， 1 ，Overland Corner，15．vi．1979，G．A． Holloway．

Holotypes，allotype and paratypes in Australian Museam．

Discussion：Tanystignia bifurcata is very smimar to Psocidus notialis Smithers，described from Western Australia，In both species the pterostigmal spur－ vein is very small，the hypandrium is symmetrical and somewhat bilobed and the phallosome has apically divided external parameres，In all other species of Tanystigma the external parameres are not so divided．The female genitalia differ in details from those of other species of Tanystighta and the extent of wing marking is considerably greater than in females of Ps，notialis，T．paulum（Smithers）and T ．tardipes（Edwards）．It is similar to that of T ． dubium（New）but that species lacks the dark mark at the wing margin in cell R_{1} ．Ps．notialis was not placed in Tanystigma when the latter genus was erected because of the bifurcation of the extermal parameres and the very small pterostigmal spurvein in both sexes．The discovery of T ．bifurcata，how－ ever，indicates the inclusion of both in Tonysfigma．

T．notialis（Smithers）comb，nov，and T．bifurcata do stand apart somewhat from the other species of the genus in having apically diyided external para－ meres．They differ from each other in that T．bifur－ cata has a longer phallosome and the wing mark－ ings are less extensive in female T ．notialis than they are in T，bifurcata．The statement made by me

FIGS 95-100. Psocidus mouldsi sp. n. 95. 우 Fore wing. 96. Subgenital plate. 97. 우 Epiproct. 98. ㅇ Ninth sternite. 99. \& Paraproct. 100. Gonapophyses.
(Snithers, 1972) that ". . Ps. notialis will probably be found to be congenoric with . . ." Clematostigma tardipes Edwards and C. mucuticeps Enderlein has not been supported by subsequent study of material of C. maculiceps (Smithers, 1983).

Psocidus mouldsi sp. n.

Female

Coloration (in alcohol): The colour patern of this species is very similat to that of the males of Blaye ansusta, described above. The spotting on the head is finer and the spots quite discrete and the ovoid mark anterion to the deellar triangle is very conspicuous. The terminal structures of the abdomen are dark, the subgenital plate being very conspicuous owing to the heavily sclerotized T-shaped area. Fore wing (Fig, 95) hyaline, marked in various shades of brown.

Morphology: Length of body: 4.0 mm . Brachypterous, fore wings not reaching end of abdomen. Lengths of flagellar segments; $\mathrm{f}_{1}: 0.64 \mathrm{~mm} ; \mathrm{f}_{2}: 0.52$ mim. Eyes not raching vertex level. IO/D: 3.4; $\mathrm{PO}: 0.83$. Measurements of hind leg: F: 0.64 mm ; $T: 3.84 \mathrm{~mm} ; \mathrm{t}_{1}: 0.48 \mathrm{~mm} ; \mathrm{t}_{2}: 0.20 ; \mathrm{rt}: 2.4: 1$; ct: 21.2 . Fore wing length: 3.4 mm ; width: 1.3 mm , Rs and M fused for a very short length. Third median cell natrow and almost parallel sided. Hind wing length: 2.9 mm ; wifth: $1.0 \mathrm{~mm}, \mathrm{Rs}$ and M fused for a short length. Epiproct (Fig 97) lightly sclerotized with two, small, curved selerotized areas about half way along epiproct and midway hetween middle and lateral edge of epiproct. Paraproct (Fig. 99) with two internal accessory sclerites attached 10 paraproct hy membrane (displaced in illustra(ion). Subgenital plate (Fig 96) with heavily selerotized transverse bar basad of posterior lobe; posterior lobe long with unusual patten of selerotization and pigment, having an ovoid, less sclerotized aren neat base of lobe. Gonapophyses (Fig. 100) with long, acuminate ventral valve; dorsal valve broad, rounded behind, constricted at the midalle and supported by Fongitudinal sclerifications; external valve with dorsal, well sclerotized ${ }_{4}$ posteriorly directed lobe. Sclerifications of ninth sternite (Fig. 98) more complex than usual in the genus.

Male

Unknown.

Matexial Examined: SOUTH AUSTRALIA. q (holotype), 40 km E Nullarbor, $131^{\circ} 15^{\prime} \mathrm{E}, 31^{\circ} 25^{\prime} \mathrm{S}_{\text {, }}$ $29.1 x .1978$, M. S. and B. J. Moulds. Paratype: 1 क, as holotype. Holotype and paratype in the Australian Musenm.

The genus Psocidus was crected by Pearman (1934) to hold a large assemblage of species which had been described in the gerius Psocus Latreille
but which could not be retained in his restricted, redefinition of that genus. Psocidus, therefore, contains many unielated species. With time it is hoped that they will be redistributed amongst present genera or logically placed in new genera. For the present Psocidus remains a "holding" genus.

The relationship of Ps. mouldsi and Ps. parilla sp. r. (described below) atre not known. They both stand apart trom other species of the family and it is hoped that when further material, including males, is forthcomiug, their position will be clarified.

Psocidus parilla sp. n.

Fentale

Coloration (in alcohol): Head pale grey-brown with it double row of brown, irregular, confluent spots adjacent to compound eyes, ncross back of vertex and on either side of median epicranial suture; an oval brown mark anterior to acellar tubercle: tubercle brown; postelypeal striations brown; genae not marked. Labrum dark brown. Antennae almost black. Eyes black. Maxillary palp with dark third and fourth segments; first and sccond segments pale, Mesothoracic notum shiny dark brown with pale parapsidal furrows, pale line along postero-lateral parts of lateral lobes and hind half of mesosctitellum pale. Pleara dark shiny brown. Coxae dark brown. Femora brown, darker along anterior and posterior sides with some irregular darker dorsal marks in distal quarter. Tibiae pale brown, darker at each ond. Tarsi dark brown. Fore wings (Fig. 10t) hyaline with paltern in various shades of brown. Hind wings hyaline with pale brown patch in distal quartor of cell Cu.i adjacent to vein Cu_{2}, but not in distal conner of cell. Abdomen pale with dorsal and lateral irregular, segmentally arranged marks. Terminal structures very dark brown.

Motphalogy: Median epicranial suture distinct. anterior arms evaneseent, Epistomial suture sinuous in middle, curving away from ocellar triangle in middle section. Length of flagellar segments: f_{1} : $0.92 \mathrm{~mm} ; \mathrm{F}_{2}: 0.68 \mathrm{~mm}$. Eyes lairly large. $10 / \mathrm{D}$: $2.5 ; \mathrm{PO} ; 0.9$, Ocelli large, anterior ocellus smaller than lateral ocelli, Measurements of bind leg: E : $0.84 \mathrm{~mm} ; \mathrm{T}: 1.92 \mathrm{~mm} ; \mathrm{t}_{1} ; 0.44 \mathrm{~mm} ; \mathrm{t}_{2}: 0.14 \mathrm{~mm} ;$ ct: 3:1;ct: 19, 3. Fore wing length: 4.7 mm ; width: 1.4 mm . Fore wing (Fig. 101) with Sc ending in R about hati way between wing base and base of pterostigma: R_{1} busad of hind angle of pterostigma very slightly eurved to give a slightly concave pterostigma, beyond apex slightly convex. Rs and M fused for a length, M and Rs and $\mathrm{Cu}_{i_{n}}$ curved to give fairly strongly concave discoidal cell. Cu_{1+1} fused with M for a length, $\mathrm{Cu}_{1 \text { a }}$ sinuous basad of fusion; basal section of Cu_{13}, and apex of arcola postica at

102

104

105

FIGS. 101-105. Psocidus parilla sp. n. 101. 우 Fore wing. 102. Subgenital plate. 103. 오 Ninth sternite. 104. ㅇ․ Epiproct 105. Gonapophyses.
slight angle to one another, Fore wing glabrous. Hind wing length: 3.4 mm ; width: 1.1 mm . Hind wing with Rs and M fused for a length, Costal cell near base broadened, the anterior margit slightly thickened and finely rugose in broad region. This part of costaI margin would lie adjacent to a slight thickening of the hind margin of the fore wing in flight and these two structures probably assist in wing coupling. A few fine marginal sctae between R_{2+3} and wing apex. Epiproct (Fig, 104), Subgenital plate (Fig. 102). Gonapophyses (Fig, 105). Sclerifications of ninth sternite (Fig, 103).

Male
 Unknown,

Material Examined: SOUTH AUSTRALJA. if (holotype), Pooginook, 5.vi.1979, A. Holloway, Paratypes: 2 ㅇ, as holotype, $29,2 \mathrm{~km}$ E Parilla, 23.vi.1979, G. A. Holloway. 1 f 4 km NW Murray Btidgc, 22.v.1981, G., J. and A. Holloway,

Holotype and paratypes in the Austratian Museum.

Discussion. See under Psocidus mouldsi.

Family MYOPSOCIDAE

Phlotodes australis (Brauer)

Psocus australis Brauer, 1865. Ver. zool. -bot. Ges. Wien 15: 908.
Psocus griseipennis McLachlan, 1866. Trans. ent. Soc, Lond. (3) 5: 348.
Myopsocus griseinennis (McL.). McLachlan, 1866. Trans, ent, Soc, Lond. (3) 5: 352 ,

Myopsocus novaczealandiae Kolbe, 1883. Ent. Nachr, 9: 145 ,

Psocus zelandicus Hudson, 1892. Manual of New Zealand Entomology, p. 107; P1. XVI, Figs. 2, 2 a .
Phlotodes griscipennis (McL.). Enderlein, 1910. S.B, Ges, naturf. Fr. Berl. 1910) (2) : 67.

IMyopsocus griseipenmis (McL.) Edwards, 1950. Pap. Proc, R. Soc. Tasm. 1949: 104, Figs. 26-32.

Phlotodes australis (Brauer), Smithers, 1975. Alsst. ent. Mag. 2 (4): 76.
Material Examined: SOUTH AUS[RALIA. 1 ब Belair, 28.ix.1935, H. Womersley.

This species has been recorded from all states except the Northern Territory.

Phlotodes hickmani (Smithers)

Myopsocus australis (Brauer). Hickman, 1934. Pap. Proc. R. Soc. Tasm. 1933: 85.

Myopsocus griscipennis (McL.), Edwards, 1950. Pap. Proc, R, Soc, Tasm, 1949: 104, Figs, 26-32.

Myopsocus hickmani Smithers, 1964. Proc. R. ent. Soc. Lond. (B) 33: 135 ,
Phlolodes hickmant (Sm.). Smithers, 1971. J. Aust. ent. Soc, 10 (1): 24.

Material Examined: SOUTH AUSTRALIA. 3 q, Morialta, 14.v.1940, H. Womersley. 6 i., Magill, 6.ii.1884, Tepper.
P. hickmani is known from Tasmania and Victoria.

ACKNOWLEDGEMENTS

I would like to thank Professor V. Y. Hickman for material of Tasmanian species of Psocoptera for comparison with South Australian material; the several collectors who provided other material, especially Geoffrey, Janet and Andrew Holloway and Max and Barbara Moulds; Gordon Gross for arranging the loan of South Australian Museum material; the Director of the South Australian National Parks and Wildlife Service for permission for work to be done in areas under his jurisdiction; the Australian Research Grants Committee for providing tunds in support of studies of the Psocoptera of the Melanesian ares and possible source areas; and Martyo Robinson for preparing the illustrations to this paper.

REFERENCES

BANKS. N. 1939. New genera and species of Neuropteroid Insects, Bull Mus. camp. Zool. Harv. 85 (7): 439 504.

CHAMP, B R and SMITHERS, C. N, 1966, The insects and mites associsted with stored products in Queensland. 1. Psocoplera. Qd J. Agric. Anim. Sei 22 (3): 259-262.
ENDERLEIN, G. 1903. Die Copeognathen der indo-australiscben Faunengebietes, Ami. hist. -far. Mus. hiens. 1: 179-344,
ENDERLEIN, G 1907. Copeognatha. In Michaelsen. W. and Hartmeyer, R. Dic Fanna Südwost-Austratiens. 1: 233-240.
HICKMAN, V. V, 1934. A contribution to the study of Tasmanian Copeognatha, Pap. roy. Soc. Tasm. 1933: 77.89

McLACHLAN, R. 1866. New genera and species of Psocidae. Trants. ent. Soc. Lond, 5 (3): 345-352,

NEW, T, R. 1971. The Psocoptera of Curlis Tsland, Tasmanis. J. Aust. L'nt. Soc. 10 (3): 223-229.
NEW, T. R, 1973, New species and records of Peripsocus Hagen (Psocoptert, Peripsocitac) from south east Australia. J. Aust. ent. Soc: 12: 340-346.
NEW, T. R. 1974. Psocidae (Psocoptera) from southern Australia. J. Aust ent. Soc 13: 285-304.
NEW, T. R. 1975. Aerial dispersal of some Vietorian Psocoptera as indicated by suction trap catches, I. Alust. cunt. Soc. 14: 139-184.
PEARMAN, I. V. 1934. New and little known African Psocoptera. Siylops 3 (6): 121-132.
SMITHERS, C. N, 1964 a. New records of Cave and Minedwelling Psocoptera in Australia. J ent. Soc. Qd. 3: 85.

SMITHERS, C. N. 1964b. The Myopsocidae (Psocoptenal of Australia. Proc. R. crt. Soc. Land. (B) 33: 133. 138.

SMITHERS, C. N. 1967. A catalogue of the Psocoptera of the world. Aust. Zool. 14 (1): 1-145.
SMITHERS. C. N. 1970. Psocoptera. In "Insects of Australia". CSIRO, Melbourne.
SMITHERS, C. N. 1972. A collection of Psocoptera (Insecta) from Western Australia, including four new species. Aust. Zool. 17 (1): 15-23.
SMITHERS, C. N. 1977. The Psocoptera of Muogamarra Nature Reserve. Rec. Aust. Mus. 31 (7) : 251-306.

SMITHERS, C. N. 1983. A reappraisal of Clematostigma Enderlein with notes on related genera (Psocoptera, Psocidae). Aust. ent. Mag. 9 (5): 71-79.
THORNTON, I. W. B., and NEW, T. R. 1977. The Philotarsidae (Insecta, Psocoptera) of Australia. Aust. J. Zool., suppl. ser. 54: 1-62.
TILLYARD, R. J. 1923. A monograph of the Psocoptera, or Copeognatha, of New Zealand. Trans. N.Z. Inst. 54: 170-196.

